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ABSTRACT
The task of Named Entity Recognition (NER) has been well stud-
ied under high-resource conditions (e.g., extracting named men-
tions of PERSON, ORGANIZATION and LOCATION from news articles). How-
ever, there are very few studies of the NER task for open-domain
collections and in low-resource settings. We focus on NER for
low-resource collections, in which any entity types of practical
interest to the users of the system must be supported. We try to
achieve this with a low cost of annotation of data from the target
domain/collection. We propose an entity recognition framework
that combines active learning and conditional random �elds (CRF),
and which provides the �exibility to de�ne new entity types as
needed by the users. Our experiments on a help & support corpus
show that the system can achieve F1 measure of 0.77 by relying on
only 100 manually-annotated sentences.

CCS CONCEPTS
• Information systems → Entity resolution; • Computing
methodologies → Active learning settings.
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1 INTRODUCTION
Named entity recognition is the task of locating mentions of entities
in text and classifying them into pre-de�ned types that are of par-
ticular interest for information extraction. The most studied entity
types are PERSON, ORGANIZATION and LOCATION, collectively known as
ENAMEX types since the MUC-6 evaluation [6]. CoNLL 2003 [19]
introduced the typeMISCELLANEOUS to anotate named entity mentions
that fall outside of ENAMEX. Most NER systems (e.g., the Stan-
ford Named Entity Recognizer [5]) also recognize TIMEX (types
DATE and TIME) and NUMEX types (MONEY and PERCENT). Further, the
Bio-entity recognition task at JNLPBA [8] was set to recognize the
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types of PROTEIN, DNA, RNA, CELL LINE, and CELL TYPE from a corpus of
bioinformatics documents [7]. The resulted annotated collections
(e.g., 30K annotations in CoNLL 2003, 60K annotations in Bio-entity
task) have enabled researchers to continue system developing and
model training in these domains.

NER has been traditionally framed as a sequence tagging problem
in models using conditional random �elds [5, 13, 18], maximum
entropy models, and hidden Markov models [12, 20]. More recently,
the approaches have shifted to neural network architectures [2, 4,
9, 10, 15]. Despite the empirical success in high-resource settings,
NER is still an important open problem for low-resource collections
in open-domains, mainly due to two challenges: (1) the lack of
large annotated sets that state-of-the-art neural network models
rely on; (2) the need of users to de�ne and recognize new types of
entities and concepts (e.g., ENTITY, ACTION, and PROBLEM, as shown
as in Figure 1), while existing public NER models [5, 16, 17] have
not been trained for such settings. As with other NLP tasks, the
data annotation cost is a bottleneck in training and deploying NER
systems in practice.

To the best of our knowledge, there are no available annotated
sets for open-domain NER. In this study, we focus on NER for low-
resource collections, in which users are allowed to de�ne any entity
types of practical interest. We try to minimize the annotation ef-
fort for data from the target domain. In particular, we employ a
collection of documents targeting IT help & support, which con-
tains nearly 1 million sentences. The proposed system actively
samples high quality sentences (as described in Section 2.3) from the
collection for users to annotate. To achieve this, the system �rst pro-
cesses the collection data by breaking it into phrases (as described
in Section 2.1). Based on information-theory-centric measures, it
identi�es and clusters important phrases from the collection. In
an attempt to maximize the bene�ts of sentence annotation, the
following two principles are followed: (1) initially, sentences with
high quality phrases from di�erent clusters are selected; (2) itera-
tively, the sentences that cause the most controversial results from
di�erent trained models are further selected for annotation. The
annotated sentences are fed into CRF models with a large set of
hand-crafted features.

2 METHODOLOGY
This section is organized as follows: the system framework is intro-
duced in 2.1, followed by the details on data processing in 2.2 and
annotation sentence sampling criteria in 2.3. Features used in the
CRF model are discussed in Section 2.4.

2.1 System Framework
Figure 2 shows the framework of the proposed active-learning sys-
tem for entity recognition. The Stanford toolkit [11] is used to split
each document from the text collection into sentences. Stopwords
are then employed as delimiters to segment the text. To simplify



 
 
The load from the system is most likely related to required retry logic due to stability issues with the CJS. 

Entity Entity Entity Action Entity Problem 

Figure 1: Sample sentence for the low-resource open-domain NER task. The sentence is selected from a corporate help &
support corpus. ENTITY accounts for mentions of machines, systems, tasks, or projects; ACTION accounts for all the actions that
can be performed on entities, including query, change, and con�gure; and PROBLEM accounts for reported or observed issues.
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Figure 2: Framework of the proposed open-domain named entity recognition system.

the exposition, we refer to the obtained text segments as phrases.
For example, the sentence in Figure 1, which is shown with the
corresponding targeted annotation, is split into the phrases “load”,
“system”, “likely related”, “required retry logic due”, “stability issues”,
and “CJS”. Note that while some of the phrases correspond to entity
mentions (e.g., “stability issues”), many others represent either in-
correct segmentations of entity mentions (e.g., “required retry logic
due”) or spurious text segments (e.g., “likely related”). Nonetheless,
this is not a severe issue because the simple phrase segmentation in
this stage is done only to enable sampling high quality sentences for
annotation. The �nal segmentations for mentions predicted by the
system are not necessarily the same as phrases recognized in this
phase. After segmentation, the phrases are weighted and clustered,
as explained further in 2.2.

Each sentence is scored following the method presented in 2.3.
An annotation pool is created by using the top 10k sentences ac-
cording to the computed scores. Iteratively, the sentence with the
highest current importance score is selected from the pool and
presented for human annotation. Once annotated, the sentence is
moved from the annotation pool to the training set for the CRF
model (as presented in 2.4). When the annotated sentences in the
training set cover all phrase clusters, the training set is randomly
split into two subsets to train CRFs and obtain two di�erent mod-
els. Sentences from the annotation pool are labeled in the order of
importance with the two CRF models until a sentence with con�ict-
ing predictions is identi�ed. The sentence is manually annotated
and moved to the training pool, and the process is repeated. The
active learning process stops when user is satis�ed with the perfor-
mance on sample dev/test or when annotation budget is reached.
Human annotations follow the standard BIO (begin, inside, outside)

structure. For each identi�ed named entity mention, the annotator
assigns a user de�ned type (e.g., ENTITY, PROBLEM, ACTION as de�ned
in Figure 1).

2.2 Data Processing
Weighted pointwise mutual information (WPMI) is used to evalu-
ate the collection-speci�c importance of the phrase, as explained
further. Let N be the number of documents in the collection, p =
{t1, . . . , tm } be them terms in the phrase p, f (ti ) be the number of
documents that contain term ti , and f (t1, . . . , tm ) be the number of
documents that contain phrase t , then WPMI is de�ned as a variant
of PMI [3] as follows:

WPMI (p) =
1
m

lo�
Pr (t1, . . . , tm )

�i 2(1,m)Pr (ti )
, (1)

where

Pr (ti ) =
f (ti )

N
, (2)

and Pr (t1, . . . , tm ) =
f (t1, . . . , tm )

N
. (3)

WPMI measures the importance of each phrase to a speci�c
collection. K-means++ [1] is used to cluster the phrases and learn
di�erent types of foci of the collection. In our investigation, we
set the number of clusters to 20. The distance between phrases is
calculated by using cosine similarity on phrase embeddings derived
additively from Word2Vec [14]. If a cluster contains fewer than �ve
phrases, its center is replaced by a new center selected following
the K-means++ initial center selection rule.



2.3 Sentence Sampling
There are two strategies for sentence sampling: the initial sampling
and iterative sampling. The purpose of initial sentence sampling
is to present to annotators high quality sentences that contain
diverse aspects of the knowledge in the collection. High quality
is measured by WPMI, while aspect diversity is targeted through
phrase clustering. Formally, let C = {c1, . . . , ck } be the k clusters
with each assigned with a cluster weight W = {wc1 , . . . ,wck },
where eachwci 2W is set as 1 for initialization. The importance
of a sentence S with phrases P = {p} is computed as:

S =
i 2[1,k]X

ci 2C
wci ⇤Max(WPMI(p : p 2 ci )). (4)

The sentence with highest importance is selected for initial human
annotation. To avoid sampling bias on large clusters, after each
sentence annotation, the weights for the clusters of phrases that
occur in the selected sentence (i.e., Max(WPMI(p : p 2 ci )) > 0)
are adjusted by using a 0.5 decay:

wci = 0.5 ⇤wci . (5)

The initial sampling stage ends when at least one phrase from
each cluster has been sampled for annotation. In our experiments,
the initial sampling usually contains 3 to 7 sentences for a cluster
size of 20. Iterative sentence sampling stage aims at achieving max-
imum CRF model improvement with minimum human annotation
e�ort. Sentences that have been annotated are randomly split into
two sets, and each of them is used for training a CRF model. The
two models are then used to predict the labels on the rest of the
sentences (ranked by sentence importance) in the annotation pool.
The �rst sentence with con�ict predictions is selected for human
annotation.

2.4 Conditional Random Field Model
The CRF models, which are trained with annotated data splits as
mentioned in Section 2.1, employ the following sets of features.
One set of 10 features is based solely on token properties: a boolean
indicator to account for numbers (e.g., “2019”); a boolean for words
starting with uppercase (e.g., “Windows”); a boolean that indicates
whether current word contains only uppercase letters (e.g., “CJS”);
current token; previous token; following token; part of speech tag
for the current token; part of speech tag for the previous token;
part of speech tag for the following token; and word vectors (from
Word2Vec [14]) for the current token. The other set contains 8
features to account for how the current token relates to the seg-
menting of the text into phrases: the BIO label of the current token
is modeled by three boolean features; the other features are: part-
of-speech tag sequence for phrase to which the token belongs (e.g.,
NN NNS for the tokens of “vertex failures”, and empty marker for
the token “failed”, which does not belong to a phrase); lowest com-
mon ancestor for the part-of-speech tags of the phrase (e.g., NP for
“vertex failures”); the residual inverse document frequency (RIDF)
of the phrase t , computed as

lo�e
N

f (t )
� lo�e

1

1 � e
�f (t )
N

f (t )!

; (6)
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Figure 3: F1 performance of the proposed system by us-
ing di�erent sampling methods and feature groups. X-axis
shows thenumber of annotated sentences in the training set;
Y-axis shows the corresponding F1.

the entropy (ENT) of the current phrase

�
X

ti 2 {t1, ...,tm }
Pr (ti ) lo�e (Pr (ti )); (7)

pointwise mutual information (PMI) of the current phrase

lo�
Pr (t1, . . . , tm )

�i 2(1,m)Pr (ti )
; (8)

WPMI of the current phrase; and Word2Vec calculated phrase vec-
tor.

3 EXPERIMENTS AND FINDINGS
To evaluate the performance of the system, 50 sentences were ran-
domly selected and annotated, then removed from the collection
and employed as test set. The annotators identi�ed in these sen-
tences 603 entity mentions, which are used for evaluation. Figure
3 compares the performance of the full system and several partial
systems. To the best of our knowledge, there are no existing systems
targeting at the same open-domain low-resource settings. Thus, we
employ Random, a system that randomly selects sentences from the
annotation pool and uses the feature group solely based on tokens,
as our baseline. Random+Phrase randomly selects sentences for an-
notation, and uses all available features; Sampling selects sentences
based on the strategies from Section 2.3 but uses only token-based
features in CRF model training. Finally, Sampling+Phrase represents
the complete system, which includes active sentence sampling and
all investigated features.

Performance improves in every setting with more sentences
being annotated and added to the training pool. Starting from sim-
ilar F1 when only 5 sentences are annotated, the performance of
Sampling improves faster than Random. This shows that the pro-
posed sentence sampling method accelerates the learning rate and
therefore, reduces in practice the annotation cost. With the same
sentence sampling method, Sampling+Phrase starts from a higher F1
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Figure 4: F1 performance for di�erent entity types.

than Sampling and keeps its advantage throughout the learning pro-
cess. This is likely because phrases recognized and ranked by using
the methodology from Section 2.2 are more likely to be valid entity
mentions, which reduces the learning cost for mention spans. The
curves of Sampling and Random+Phrase cross with 23 sentences
annotated; this shows that the automatically identi�ed phrases
play an important role when the number of annotated sentences
is very small; as more sentences get annotated, the sampling pro-
cedure becomes more important to the accelerate learning. When
these techniques are used in conjunction, Sampling+Phrase outper-
forms the baseline Random in a statistically-signi�cant manner, and
achieves F1 0.77 with only 100 annotated sentences.

We observed several factors that in�uenced performance with re-
spect to the custom entity types handled by the system. As shown in
Figure 4, the di�culty of recognizing entity mentions varies across
types. Recognizing mentions of PROBLEM was found to be harder
than recognizing ACTION or ENTITY mentions, partially because the
lack of expressive lexical clues for this type (e.g., both imbalanced
job and starting and shutting down continuously are categorized
as PROBLEM). External knowledge (e.g., domain-speci�c dictionary,
expert provided knowledge) could potentially further improve the
performance based on the current system. The second factor is the
number of user-de�ned types. Adding more types increases the
risk of label confusion and decreases the overall performance. Last
but not least, another �nding is that tokens that can be used both
in entities and as functional words are di�cult to handle when
very little annotated data are available. For example, the token
“starting” is tagged both as PROBLEM in “starting and shutting down
continuously” and as OTHER in “Starting from 11/1”.

4 CONCLUSION AND FUTUREWORK
We proposed an active learning framework for the open-domain
low-resource NER, which provides �exibility in terms of entity
types to be recognized. The learning process is independent from
external general sources (e.g., Wikipedia) or pre-existing collection-
speci�c resources. We evaluated the contributions of di�erent com-
ponents through ablation experiments, and showed that the full
system achieves performance that is usable for real scenarios. For

future work, we plan to apply and test the framework in other
low-resource domains. In addition, we plan to build an online in-
terface to collect real user feedback for this framework, and enable
the creation of publicly-available open domain NER datasets for
research.
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