LEVERAGING SIDE INFORMATION FOR SPEAKER IDENTIFICATION WITH THE
ENRON CONVERSATIONAL TELEPHONE SPEECH COLLECTION

Ning Gao,'? Gregory Sell,?> Douglas W. Oard,** Mark Dredze®

ICollege of Information Studies and UMIACS, University of Maryland, College Park
2Human Language Technology Center of Excellence, The Johns Hopkins University

ABSTRACT

Speaker identification experiments typically focus on acoustic sig-
nals, but conversational speech often occurs in settings where addi-
tional useful side information may be available. This paper intro-
duces a new distributable speaker identification test collection based
on recorded telephone calls of Enron energy traders. Experiments
with these recordings demonstrate that social network features and
recording channel metadata can be used to reduce error rates in
speaker identification below that achieved using acoustic evidence
alone. Social network features from the parallel Enron email col-
lection (37 of the 41 speakers in the telephone recordings sent or
received emails in the collection) improve speaker identification, as
do social network features computed using lightly supervised tech-
niques to estimate a social network from more than one thousand
unlabeled recordings.

Index Terms— Speaker Identification

1. INTRODUCTION

Understanding conversational speech is a challenging task with
many potential applications; examples include providing access to
recorded meetings, making sense of the panoply of records that can
be generated in lifelogging, and—our focus in this paper—analysis
of telephone conversations that were recorded for regulatory com-
pliance purposes. While some practical applications can present
additional challenges (e.g., acoustic conditions such as additive
noise or room reverberation), specific applications can also provide
new opportunities (e.g., the availability of side information that char-
acterizes the broader context in which the conversations occurred).
In this paper we focus on some of those opportunities.

Collections that are representative of the situated use of conver-
sational speech in specific conditions have been available for some
time. Notably, the AMI and AMIDA projects [1] created a corpus
of meeting recordings consisting of two types of meetings: a de-
sign scenario, and naturally occurring meetings in a range of do-
mains. Side information in those cases includes email messages be-
tween the meeting participants. A new collection of Mission Con-
trol Center conversations from NASA’s Apollo Program is expected
to be released soon, and in that case the side information consists
of metadata indicating the roles and expected participants on spe-
cific intercom circuits plus thousands of written documents (e.g.,
technical reports) [2]. Lifelogging is also of interest to speech re-
searchers [3, 4, 5], although the first public lifelogging test collection
(from NTCIR) is focused on image rather than spoken content [?, 6].
Despite the potential for collections like these to be used to explore
contextual features, the research community as a whole has initially
pushed hardest on fully exploiting the acoustic information common
to all of these applications.

In this paper, we describe experiments with a conversational
telephone speech collection for which five types of side information
are available. The collection is built from recorded phone conversa-
tions made by or to Enron energy traders, and the task that we study
is closed set identification of known speakers. Our principal focus is
on coupling acoustic evidence with specific types of side information
to improve performance on this speaker identification task.

Our basic approach is as follows. For each phone recording, we
first use a conventional speaker identification system trained only on
acoustic evidence to rank each of the candidate speakers according
to the probability of their being one of the speakers in a specific call.
Then we use one of five types of side information (two types of so-
cial network features, two types of channel features, and detected
mentions of known name variants) to re-rank the speaker candidate
list for each call. Our social network features are based on the con-
tact frequency between candidate speakers, which can be observed
directly in the email collection, or which must be estimated for the
automatic (and thus potentially erroneous) predictions for telephone
calls that are initially based on acoustic evidence. These features
are then used to re-rank the candidate speakers in a manner that puts
speakers who are more likely to speak with highly ranked speakers
closer to the top of the list. The channel features are learned from
a list (that had been manually prepared independently for a court
case) of the channels on which specific speakers might be expected
or are estimated using acoustic evidence for a set of calls with un-
known participants. We can then re-rank the candidate speaker list
for any recording in a way that promotes people who would be ex-
pected to appear on the known channel of each call. Finally, as with
any collection we can also use the content of the call to re-rank can-
didate speakers in ways that promote people who might be referred
to by some name mentioned during the call. Our experiments with
name mentions are more preliminary, focusing on whether further
improvements can be obtained using name variants (e.g., nicknames)
that are learned from the associated email collection.

In the remainder of this paper, we first introduce the Enron Con-
versational Telephone Speech (CTS) collection and the associated
side information in Section 2. Section 3 then introduces our evalu-
ation measures. Baseline results using acoustic evidence alone are
presented in Section 4, followed by results using five types of contex-
tual features in Section 5. Our discussion of those results in Section
6 is then followed by brief mention of future work in Section 7.

2. TEST COLLECTION

In this section, we describe the full Enron CTS and Email corpora in
Section 2.1 and 2.2, followed by details of the test collection that we
have built from those corpora in Section 2.3.



2.1. Enron CTS Collection

The Enron CTS collection consists of 1,731 recordings that together
total 47.8 hours. Each recording includes at least one, and some-
times more than one, telephone conversation made from or to an
Enron energy trader. These phone recordings were made for regu-
latory purposes, and were posted to the Internet by the Snohomish
County Public Utility District in Oregon pursuant to their use in a
lawsuit.! For those recordings that include more than one call, the
calls are typically separated by some combination of dial tone, Dual-
Tone Multi-Frequency (DTMF) dialing codes, and ring tone. Tran-
scripts were manually prepared for 57 of these recordings for use in
court. Those transcripts are available as scanned page images, for
which Optical Character Recognition (OCR) yields a low charac-
ter error rate. We therefore use uncorrected OCR when using these
transcripts for content representation (for some of our experiments.)
The transcripts include the channel (which we manually correlated
to the channel metadata for those 57 recordings) start time, and du-
ration. Speaker turns in the transcripts are labeled with the name
of the speaker when that speaker could be reliably identified by the
transcriber; on average there are 1.4 identified speakers per manually
transcribed recording (which on average includes 1.5 calls). The
document that contains the transcripts also contains a table show-
ing which speakers were either frequently or sometimes observed
on each channel. That table had been manually prepared for use
in the court case; we transcribed it manually for use in our experi-
ments. For each recording file, its recorded channel can be extracted
from the file name (e.g., audio file SNO-163-1-20000803-9102233-
9163302.wav is recorded from channel 163).

2.2. The Enron Email Collection

The Enron email collection distributed by Carnegie Mellon Univer-
sity (CMU) [7] has been widely studied by researchers with interests
in social network analysis or automated processing of informal text,
but it has been little used in speech processing research. The collec-
tion contains 517,431 unique messages saved by the owners of 152
email accounts. The collection contains about 133,000 unique email
addresses, which after clustering (by associated full names) yielded
entity models for 124,475 unique person entities [8]. Elsayed pro-
cessed this collection in two ways that are useful to us: performing
deduplication (resulting in 248,573 unique messages) and construct-
ing a collection-specific knowledge base of person entities [8]. Each
entity model contains all known email addresses and all known name
variants for that person, where the name variants (e.g., first name or
nickname) were learned from the salutations (e.g., “Hi Dave!”) or
signatures (e.g., “Thanks — Jim”) of message body text in the collec-
tion, or inferred from automatic tokenization of full names or email
addresses found in the headers of those messages. Each entity model
also includes counts for messages sent to or receive from each other
entity. Because the collection was built from messages stored by or
on behalf of individuals, some of whom retained messages longer
than others, these contact statistics are a convenience sample of the
actual contact statistics for Enron as a whole. Notably, the 152 email
accounts used to build the collection are naturally substantially over-
represented in comparison with other Enron accounts.

"https://web.archive.org/web/20050206035158/
http://www.enrontapes.com/files.html

2.3. Building a Speaker Identification Test Collection

We partitioned the 57 recordings for which manual transcripts are
available into a training set containing 28 recordings and a test set
containing 29 recordings. Across the 57 recordings there are a total
of 41 different speakers whose names are available from the tran-
scripts, and we were able to manually associate 37 of these names
with the full names of people represented in Elasyed’s collection-
specific knowledge base. We selected 28 of the 57 recordings as a
training set in a manner that ensured that the full set of 41 known
speakers would each be represented in at least one training record-
ing. For each of these 28 recordings in the training set we then man-
ually diarized segments for each known speaker for use in training
the speaker models. We use the remaining 29 transcribed recordings
as the basis for our test set. We manually segmented this test set
into individual telephone calls; this results in a total of 45 test calls
(some of which are very short). The known speakers for each call
were then manually determined from the scanned transcripts, which
had been manually prepared.

3. EVALUATION MEASURES

Our core task is to identify which speakers from the training set are
present in a call from the test set. There is always at least one known
speaker, and often there are two. There are calls with three or more
speakers, but none include more than two known speakers. In the
experiments that follow, we consider this problem from two differ-
ent paradigms: detection and identification. Detection is the task of
finding the recordings that include a particular speaker, while identi-
fication is determining which of the known speakers is in the partic-
ular recording-of-interest. In both cases, we consider the problem as
closed-set, meaning that we are concerned with identifying only the
known speakers, and at least one known speaker is present in every
call in the 45-call test set.

First, to evaluate detection, we measure performance using the
detection cost function (DCF) [9], a common metric in speaker
recognition.

DCF = CyPuPr+ CraPra(l — Pr) (D

The cost of misses and false alarms, C'as and C'r 4 respectively, are
both set to 1, and the prior probability Pr is set to 0.03, matching
the evaluation prior to maximize smoothness. This metric involves
pooling all scores for every speaker-call pairing and then setting a
universal detection threshold. We report scores at the oracle thresh-
old, yielding the minimum DCF for the system at that prior.

Second, to evaluate identification, we compute classification er-
ror, which simply determines how often the correct speaker is given
the highest score for a particular file. In the cases where there are
two known speakers in the file, the lower-scored known speaker is
considered correct if his/her score is higher than all incorrect speak-
ers. Given that there are 41 possible speakers, classification error
for chance decisions would be roughly 0.976 (in actuality, it is slight
lower, due to the instances with two correct speakers).

Third, for additional insight into identification performance, we
supplement with an evaluation measure based on mean reciprocal
rank (MRR), common in information retrieval. The fundamental
statistic that we seek to estimate is the rank of each known speaker
in the list of scores for a particular recording. When there are multi-
ple known speakers, we replicate the system’s ranked list with one of
the two known speakers removed in each. We then take the harmonic



mean of the rank of the known speaker in each such list:
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where r; is the rank of the known speaker in list ¢ and n is the num-
ber of lists (i.e., the number of speaker-call pairs). R can thus be
interpreted as the number of rank positions below what would oth-
erwise be a perfect ranking at which the system places the correct
speaker. In our experiments R is always between zero and one, but
in principle R is unbounded and R for a random ranking would be
about 20.

For each of our measures, lower values are preferred, with zero
being the lowest possible value. Moreover, because zero indicates
perfect performance (corresponding to consistently putting every
known speaker at the earliest possible rank), our measures are all
ratio measures (i.e., measures in which, for example, a value twice
as large is twice as bad); this makes small differences meaningful.

R= -1, @

4. ACOUSTIC SPEAKER IDENTIFICATION

Our i-vector [10] baseline system for speaker identification uses
acoustic evidence alone to rank all known speakers. The system
used the Fisher English corpus to train the universal background
model (UBM) and total variability (T) matrix, and NIST SRE ’04,
’05, 06, and ’08 data to train the Probabilistic Linear Discrimi-
nant Analysis (PLDA). The resulting system performs competitively
with other state-of-the-art acoustic-only i-vector systems on stan-
dard evaluations. Each trial resulted in a log likelihood ratio that was
calibrated via unsupervised methods [11] using the 1,674 unlabeled
recordings (1,731 minus the 57 labeled training or test recordings).

In this case, the recordings typically include multiple speakers,
so diarization was required in front of the i-vector system. For each
file, a diarization system based on i-vector segments [12] was used to
estimate the number of speakers and the bounding marks for each.
These marks were scored against the model in question, and then
fed into the recognition system, resulting in an i-vector for each es-
timated speaker. The maximum score among those was retained as
the overall score for the model in that conversation.

Since we are considering the tasks here as closed-set, we also
applied Bayes’ rule to the scores, normalizing each model’s score
by the sum of all model scores for that test file. Note that this is
an improper operation when more than one true speaker is present
in the file, and modifying the process to account for this could be
valuable future work.

The baseline system achieves a DCF of 0.67, classification error
of 0.56, and a (harmonic) expected rank R of 0.73 (Table 1).

5. RE-RANKING TECHNIQUES

In this section, we discuss our approaches for improving over the
acoustic baseline with side information. We re-rank speaker scores
using a social network (Section 5.1), channel information (Section
5.2), or name variant detection (Section 5.3).

5.1. Social Network Re-Ranking

Our first experiment uses a social network to re-rank speakers; we
begin with the email social network. We have 41 known speakers, 37
of whom sent or received email in the CMU Enron email collection.
For each of these 37 speakers, we know from Elsayed’s knowledge
base how often they communicated with each of the other 36 known

speakers in the email collection. Conceptually, then, we could rea-
sonably expect a conversation to more often involve frequent com-
municants than rare ones.

We formalize this as follows. If two known speakers were
present in the same email header (i.e., if one sent and the other
received an email message, or if both received the same message)
we build an edge between them in the social network, and we set the
weight of that edge to be the frequency with which they communi-
cate. Let e; denote the sum of the edge weights that are connected
with one of the speakers (which we refer to as the left speaker), e,
to denote the sum of the edge weights that are connected with the
other (“right”) speaker, e; to denote the (undirected) edge weight
between the left speaker and the right speaker, and >_ e to denote
the sum of all the edge weights in the social network. The score of a
pair is then calculated as:

(o e ().

The equation shows the five factors that influence our estimate
of whether the left and right speakers are true speakers in the con-
versation: the acoustic score s; of the left speaker, boosted by the
degree to which the left speaker is a frequent communicant (%);
the acoustic score s, of the right speaker, boosted by the degree
to which the right speaker is a frequent communicant (<¥-); and
a boosting factor applied to both that reflects the degree to which
these two speakers communicate with each other (gre ). The use
of two individual boosting factors is a precision-oriented design re-
flecting that only frequent communicants with high acoustic ranks
have the power to “pull” up other speakers. We then re-rank the
speakers according to their highest associated s, (or their original
score in the case of speakers with no observed pairs). Table 2 illus-
trates the ranking by acoustic score, the pair ranking, and the final re-
ranked list using an actual example from the collection (with names
anonymized). The first pair places SpeakerOl and Speaker03 on the
re-ranked list, in that order; the second pair then results in addition
of Speaker04, and the final insertion of speakers missing from any
pair adds Speaker02.

If we knew which speakers had actually participated in some
large number of phone calls, we could apply a similar process to
leverage the telephone social network, but true labels are only known
for a small number of phone calls. Instead, we use our acoustic base-
line system described in Section 4 to predict which speakers partici-
pated in each of the 1,703 non-training recordings (1,731 minus the
28 labeled training recordings). By counting these predicted tele-
phone interactions, we can generate a similar network to that drawn
from the emails, thus producing an alternative re-ranking that we
can evaluate to determine whether the larger size and more accurate
observability in the email social network yields better results than
the smaller and less accurately estimated, but perhaps more highly
comparable, telephone social network.

Our measures provide different insights in this case, shown in
Table 1. DCF shows a dip in performance for both networks, with
the email network hurting the score slightly less (from a baseline of
0.67 to 0.72) than the phone network (0.74). Classification error, by
contrast, improves in both cases, again with the email network (0.49)
yielding slightly better results (from a baseline of 0.56 to 0.49) than
the telephone network (0.51). In terms of R, the telephone social
network turns out to be the clear winner, however, improving by
11% relative to the baseline (from 0.73 to 0.65) compared to 0.70
for the email network. It seems clear from these results that both
networks help for identification, but not necessarily for detection,
and the measures disagree about which network is more useful.




Single Source

[ DCF@0.03 || Classification Error [ R |

Baseline 0.67 0.56 0.73
Email Social Network 0.72 0.49 0.70
Phone Social Network 0.74 0.51 0.65
Manual Channel 0.69 0.43 0.53
Estimated Channel 0.76 0.46 0.57
Name Variants 0.43 0.21 0.17

Multiple Sources

[ DCF@0.03 | Classification Error [ R |

Email Social Network & Estimated Channel 0.74 0.48 0.55
Phone Social Network & Estimated Channel 0.69 0.51 0.64
Email Social Network & Manual Channel 0.66 0.43 0.50
Phone Social Network & Manual Channel 0.61 0.46 0.56

Table 1. Evaluation of the Re-ranking results.

Acoustic Ranking of Final
Rank Speaker Pairs Re-ranked List
Speaker01 || SpeakerOl & Speaker03 Speaker(O1
Speaker02 || Speaker04 & SpeakerO1 Speaker03
Speaker03 Speaker04
Speaker04 Speaker02

Table 2. A re-ranking example. The true speakers are Speaker0]
and Speaker03.
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Fig. 1. Rank improvement of true speaker after re-ranking.

Aggregate results can mask important insights, so Figure 1 pro-
vides a compact visualization of where this approach works, and
where it fails, for the self-trained telephone social network. In this
plot, the Y axis shows the change in rank of the true speakers as a
result of the side information for each test trial, which is itemized on
the x-axis and sorted by the initial R ranking. The upper and lower
bounds of possible rank changes are also shown for context.

As can be seen, no speaker that the acoustic evidence had ini-
tially correctly placed at the best possible rank (i.e, no speaker for
which the upper bound on the possible improvement was zero) was
adversely affected by re-ranking. Notably, four speakers (each of
which started out near the top of the list) achieved the maximum

Speaker Main Channel(s) | Other Channel(s)
Speaker05 1,13 2,3,14, 15
Speaker06 26 16, 25, 51

Table 3. Example channel information for speakers.

possible improvement. Re-ranking resulted in more changes—both
positive and negative—for speakers lower in the list, moving the rank
up in 17 cases and down in only 12.

5.2. Channel Re-Ranking

The Enron CTS collection also includes metadata indicating on
which channel each call was recorded, as well as a list (prepared
professionally for use in a lawsuit) that indicates which people were
typically recorded on which channels. Table 3 shows an anonymized
excerpt from this list. The “Main Channel(s)” are those on which the
compiler of the list expected to see the speaker most often, whereas
“Other Channels(s)” are those on which they chose to note that the
speaker was also sometimes present. Some channels repeat as main
channels for different speakers, suggesting that there was some shar-
ing of phones (e.g., during different work shifts), meaning that this
channel information is not sufficient on its own for predicting the
true speaker. It is easy to see how we might use this information to
re-rank the speakers, since if we know that Speaker05’s main chan-
nel is channel 1 and that channel 1 is not Speaker06’s main channel,
then Speaker05 may be a better speaker candidate than Speaker06
when the call is recorded on channel 1.

For comparison with this manually compiled channel infor-
mation, we also tried a process similar to that used to build our
telephone social network to estimate channel probabilities for each
speaker on the 1,703 non-training recordings. To do this, we used
the observed channel mappings learned from acoustic evidence and
the training recordings to estimate how often each speaker was likely
to be recorded on each channel.

We then formalize the re-ranking process as follows. Let T' =
(t1,...,tm) be the m unique channels on which recordings in the
collection have been recorded, and F. = (f1,..., fm) be the num-
ber of calls in which candidate speaker ¢ was detected using each
channel based on acoustic evidence. We then calculate a new score
s. for each candidate c based on the acoustic prediction score s. and
an estimate of the probability that speaker c is observed on channel

i
/ i )
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Fig. 2. Rank improvement using the estimated speaker-channel in-
formation.

where ) is a parameter to adjust for the relative weight of the channel
information. In our experiments, we arbitrarily set A\ = 1. This is
a simple approach to explore the contributions of this type of data,
but a more principled estimation and incorporation, such as in [13],
would be a valuable extension in the future.

To use the same re-ranking process with the manually prepared
list, we arbitrarily set the number of calls to 2 for main channels, to
1 for other channels, and and O for channels that are not listed. Al-
though this process is not optimized, it serves as a useful reference to
compare against the results of our automated estimates that are esti-
mated from a larger, but noisier, set of examples from what amounts
to semi-supervised training.

When using the manually prepared speaker-channel table, de-
tection performance as measured by DCF degrades slightly (from
0.67 to 0.69), while the estimated channel information degrades DCF
more substantially (from 0.67 to 0.76). However, both classification
error and R show improvements in identification performance with
either source of channel information. Using the manually prepared
table improves classification error (from 0.56 to 0.43) and R (from
0.73 to 0.53), while using the automatic channel estimates improves
classification error somewhat less (to 0.46) and R correspondingly
less (to 0.57). This improvement in R from the fully automated tech-
nique is a 22% relative improvement that is significant under a two-
tailed paired t-test (at p <0.05).

Figure 2 shows a compact analysis of the case-by-case results
for the provided speaker-channel table that is structured identically
to that in Figure 1. In this case there are 11 improvements and 12
reductions in rank, but many of the improvements are near the top
of the ranked list and at or near the upper bound, whereas the reduc-
tions in rank occur only for correct candidates that were already at or
below rank 3, and they come nowhere near the lower bound. Classi-
fication error and R both reward these improvements more than they
penalize reductions in rank with those characteristics.

5.3. Name Mention Re-Ranking

Frequently speakers will identify themselves at the beginning of a
conversation (e.g., “Snohomish, Jay.” “Hey Jay, Holly.”). Since we
know (from the knowledge base constructed from the email collec-
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Fig. 3. Rank improvements by using the named variants automati-
cally detected in manual transcripts.

tion) how 37 of our 41 speakers might be referenced, we can easily
make use of evidence from named mentions. We formalize this as
follows. For each speaker candidate, we first automatically match
it to at most one person entity in the knowledge base introduced in
Section 2.2, and we then make a list of all name variants associated
with that entity. The knowledge base includes information about the
frequency with which each variant was observed, so we record that
in our list as well. For example, an individual could be mentioned
as John in the Enron email collection five times, and mentioned one
time as Johnny (nickname). Therefore, we estimate the probability
of that person entity being mentioned as John as p = 5/6 = 0.83.
We automatically scan the first two speaker turns in the manual tran-
script of each call in the test set for all name variants in our list, and
then we rescore each candidate as:

s = sc* (14 Bp), )

where s/c and s. are defined above, (3 is a parameter that could be
tuned to adjust the weight of name variant evidence (set to 1 in our
experiments), and p is the estimated probability from the knowledge
base that the candidate is mentioned by that name (0.83 in the exam-
ple).

This approach is something of a special case of phonotactic
speaker recognition, which recognizes speakers by the content of
their speech. However, the key difference here is the data itself. In
collecting data for other sets, such as NIST SRE, self-identification
is typically removed from the audio. This data, on the other hand,
more closely reflects real-life interactions. The approach proves to
be effective, substantially improving DCF from 0.67 to 0.43, classi-
fication error from 0.56 to 0.21, and R from 0.73 to 0.17. Figure 3
shows that nearly every candidate whose name was detected in the
first turn of each speaker turned out to be the true speaker. However,
the use of nicknames learned from email body salutations and signa-
tures (e.g., Johnny as a nickname for John) has only a small effect;
when we remove those nicknames from the knowledge base and use
only the provided first and last names, performance degrades only
very slightly (DCF from 0.43 to 0.44, classification error from 0.21
to 0.23, and R from 0.17 to 0.18).

We must, however, offer two caveats regarding this experiment.
First, we utilized manual transcripts for these experiments, and the



degree to which this result can be replicated using speech recognition
will depend on the ability of that speech recognition system to de-
tect the name mentions. Task-specific tuning of the language model
might help with that, since the list of name variants is available in ad-
vance. Second, there is little ambiguity in the name variants among
our set of 41 speakers (only 37 of which have associated knowl-
edge base entries). With far larger speaker sets, effective techniques
for disambiguation would become important. Results from entity
linking in email indicate that this is an entirely tractable problem
(when social network evidence and evidence from content are used
together) [14, 15], but of course both the social network and the con-
tent evidence are generally less accurately observable in speech than
in email text.

5.4. Combination of Multiple Sources

Table 1 also shows the effect of fusing the re-rankings with simple
score summation. For these experiments, we only explored the com-
binations of one type of social network with one type of channel
information, yielding four fusion pairs. The DCF detection mea-
sure again tells a different story to the two identification measures.
When combined with manual channel information, some improve-
ment over the acoustic baseline is observed with the telephone social
network (from 0.67 to 0.61), whereas only a slight difference in DCF
is observed when manual channel information is combined with ev-
idence from the social network (0.66). Combinations with estimated
channels yield no improvements (and indeed slight degradation) in
DCEF. The identification measure R improves when the email social
network is used together with channel information, when compared
to the already-good results for channel information (both for manual
channel information from 0.53 to 0.50) and for estimated channel in-
formation (from 0.57 to 0.55). No similar improvement is seen from
using the telephone social network. The classification error measure
shows no improvement over either type of channel information for
either type of social network.

6. DISCUSSION

In considering the collective results of all the above experiments,
there are a few overall impressions. First, by either of the identifi-
cation measures (classification error or R) it is clear that the incor-
poration of social network evidence helps a little and that channel
information helps somewhat more. The use of nicknames learned
from the email collection doesn’t help much at all since in our test
collection there is only one person “Stanley” referred to by a nick-
name “Stan”. However, we might find greater usefulness of nick-
name matching when there are more people involved in a larger data
collection. Among the two social networks we tried, using the evi-
dence from communication patterns in the email network results in
consistent improvements, both with and without the complementary
evidence from channel information. The telephone social network is
even more helpful than the email network when used alone, but when
used in combination with the channel information from either source
the telephone social network yields no further improvement over us-
ing channel information alone. One plausible explanation for this is
that all channel information, manual or automatic, ultimately relies
on acoustic evidence, and acoustic evidence also informs our esti-
mate of the telephone social network. When combining evidence,
the email social network is thus a better choice as a complementary
source of evidence.

However, the results also show that the same side information is
much less helpful for speaker detection, at least as characterized by

our DCF measure, and, in fact, it is often detrimental. This is likely
due to one of two causes: (1) the side information is affecting test
files differently, which causes the scores to pool poorly; or (2) the
side information is causing more false alarms, which are weighted
more heavily in DCF at the selected prior. The latter option appears
to be more likely based on examination for Figures 1 and 2, where
we see that the true speaker is moved down the list almost as often
as it is moved up. DCF measures this balance differently than does
classification error or R, both of which are more strongly influenced
by what happens at (or in the case of R, near) the top rank. This
explanation is also supported by the fact that the name variant side
almost never hurts the rank of the true speaker in Figure 3, and this
was the only side information to improve DCF on its own.

The fact that channel information consistently outperformed so-
cial network information as a side information feature both by clas-
sification error and by R is intriguing, but we must note that the
structure of this test collection (with telephone lines used by specific
people being recorded) is particularly well suited to the use of chan-
nel features. In other applications (e.g., cases in which trunk lines
are recorded) it may be social network features that are of greater
use. Our results do show, however that we are able to estimate chan-
nel assignments from acoustic evidence sufficiently reliably to be
useful, and to achieve results close to what manual annotation was
able to perform.

One final observation is that both of our automatically-derived
sources of information (the telephone social network and the esti-
mated channel information) offer the promise for a double bene-
fit from future improvements to acoustic speaker recognition tech-
niques, since both automatically derived sources leverage acoustic
speaker recognition. So not only will the acoustic baseline improve,
but better estimates will be made on the unlabeled data, possibly
resulting in better side information as well.

7. CONCLUSION

We have introduced a new speaker identification test collection and
explored five approaches for incorporating side information to im-
prove performance on a speaker identification task. We have illus-
trated how the Enron conversational telephone speech collection can
be used for such experiments, and we have used that data to demon-
strate that automatic predictions can be used as a basis for social
network and channel analysis to improve speaker identification. Our
experiments with name mention features using manual transcripts
yielded improvements that were unsurprising, but they allowed us
to study the effect of adding nicknames to the set of known name
variants.

In Section 5.4, we explore the combination of different types of
side information by simply summing the scores. One future direc-
tion would be applying a machine learning framework to learn the
appropriate combination model for the collection. Another direction
that we would like to explore would be to experiment with the use of
spoken term detection for person names, thus automating a process
that our present experiments with manual transcripts have shown to
have substantial potential for yielding improvements.
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