CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2013; 25:1604—1621
Published online 24 July 2012 in Wiley Online Library (wileyonlinelibrary.com). DOIL: 10.1002/cpe.2906

LAF: a new XML encoding and indexing strategy for
keyword-based XML search

Zhi-Hong Deng*", Yong-Qing Xiang and Ning Gao

Key Laboratory of Machine Perception (Ministry of Education), School of Electronics Engineering and Computer
Science, Peking University, Beijing, China

ABSTRACT

As a large number of corpuses are represented, stored and published in XML format, how to find useful
information from XML databases has become an increasingly important issue. Keyword search enables
web users to easily access XML data without the need to learn a structured query language or to study
complex data schemas. Most existing indexing strategies for XML keyword search are based upon Dewey
encoding. In this paper, we proposed a new encoding method called Level Order and Father (LAF) for XML
documents. With LAF encoding, we devised a new index structure, called two-layer LAF inverted index,
which can greatly decrease the space complexity compared with Dewey encoding-based inverted index.
Furthermore, with two-layer LAF inverted index, we proposed a new keyword query algorithm called
Algorithm based on Binary Search (ABS) that can quickly find all Smallest Lowest Common Ancestor.
We experimentally evaluate two-layer LAF inverted index and ABS algorithm on four real XML data sets
selected from Wikipedia. The experimental results prove the advantages of our index method and querying
algorithm. The space consumed by two-layer LAF index is less than half of that consumed by Dewey
inverted index. Moreover, ABS is about one to two orders of magnitude faster than the classic Stack
algorithm. Concurrency and Computation: Practice and Experience, 2012.© 2012 Wiley Periodicals, Inc.

Received 19 January 2011; Revised 27 June 2012; Accepted 27 June 2012

KEY WORDS: XML keyword search; LAF; two-layer index; ABS; SLCA

1. INTRODUCTION

XML is a new kind of markup language emerging from 1998. Because XML provides a basic syntax
that can be used to share information between different kinds of computers, different applications, and
different organizations without needing to pass through numerous layers of conversion, XML has
become the standard to represent, exchange, and share data on the web, leading to the rapidly
increasing of documents published in XML format.* How to store and retrieve XML documents has
become an urgent and popular problem in the field of data management [1]. Keyword-based XML
search is a proven user-friendly way of querying XML documents. It allows users to find
information they are interested in without the need to learn a complex query language or prior
structure knowledge of the underlying data.

Different from traditional keyword search, XML keyword search returns, instead of full documents,
relevant elements that contain given query keywords as searching results [2].

Therefore, XML keyword search brings several new challenges. The ultimate challenge is how to
improve the efficiency and effectiveness of keyword search by considering the hierarchical structure
of XML documents. At present, there are many studies on XML keyword search. Most of the

*Correspondence to: Zhi-Hong Deng, Peking University, Beijing, China.
E-mail: zhdeng@cis.pku.edu.cn

1http://www.w3 .org/XML

Copyright © 2012 John Wiley & Sons, Ltd.

http://www.w3.org/XML

A NEW INDEXING STRATEGY FOR KEYWORD-BASED XML SEARCH 1605

studies focus on the query semantics and their corresponding algorithms [3,2,4-6], the efficiency of
algorithms [7, 8], result generation and presentation [9-14], and top-K keyword search [15,5,16].
There are few works on the index methods for XML keyword search. Since Dewey encoding was
first introduced to label and index XML elements by [2], it has become the dominant encoding
schema to store and index XML documents because it contains rich structure information for
implementing XML keyword search efficiently. In addition to the index methods based on Dewey
encoding, some other indexing methods [17-21] have been proposed for indexing XML documents.
However, these indexing methods are not convenient for computing Lowest Common Ancestor
(LCA) [2], the fundamental component of XML keyword search. Therefore, most XML keyword
search systems [22, 23, 2,24,4, 5, 25,6] adopt index methods based on Dewey encoding.

However, Dewey encoding has two obvious disadvantages. First, it may cause indexing
redundancy. The reason lies in the following: (i) with the increasing of elements’ depth in XML
tree, the Dewey ID of elements get longer and longer and (ii) each element keeps its parent’s Dewey
ID as code prefix. Second, it is inefficient for Dewey encoding to compare two Dewey IDs. To
obtain the LCA of two Dewey IDs, we have to compare every dimension of the common prefix of
these IDs.

To solve the aforementioned problems caused by Dewey encoding, we present a new labeling
schema and indexing solution: Level Order and Father (LAF) encoding and two-layer LAF inverted
index. In addition, a new XML searching algorithm based on two-layer LAF inverted index called
Algorithm based on Binary Search (ABS) is proposed. The experiment results show that two-layer
LAF inverted index outperforms Dewey inverted index in space complexity comparison and ABS is
much better than the classic Stack algorithm in efficiency.

Although LAF was first proposed briefly in [26], this paper makes great progress as follows.

1. We thoroughly discuss the work related to LAF and two-layer LAF inverted index. The content
used to explaining and analyzing these two parts gets doubled compared with [26].

2. We explicitly introduce a new algorithm, ABS, which is very efficient in finding the query results
according to Smallest LCA (SLCA) semantic by fully making use of two-layer LAF inverted
index. This part is not shown in [26].

3. Additional experimental results on efficiency have been reported extensively. We examine the
efficiency of our ABS algorithm with the classic Stack algorithm on four data sets extracted from
Wikipedia with different sizes.

The remainder of the paper is organized as follows. Section 2 introduces the relevant concepts.
Section 3 introduces LAF encoding, a new kind of encoding schema. Section 4 presents a new
indexing structure called two-layer LAF inverted index, based on LAF encoding. In Section 5, we
propose a new algorithm ABS to find the query results quickly according to SLCA semantic.
Experimental results are presented in Section 6. Section 7 summarizes our study and points out
some future research issues.

2. BASIC PRINCIPLES

In this section, we firstly introduce the data structure of XML documents briefly. Then, an introduction
to SLCA, the currently popular query semantics model for XML keyword query, is given.

2.1. Data structure

As is known, XML is a hierarchical format for data representation and exchange. An XML document
consists of nested XML elements starting with the root element. Each element can contain attributes
and values. Figure 1 is an XML document representing the introduction of a book. The <book>
element in the second line is the root, in which <name>, <author>, and <chapter> are the
underlying subelements. The <chapter> element contains an attribute ID whose value is ‘1. The
<section> element in line 10 is a subelement of <subchapter>, with text value ‘Information
Retrieval at the Center of the Stage’.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1604-1621
DOI: 10.1002/cpe

1606 Z.-H. DENG, Y.-Q. XIANG AND N. GAO

1 <7xml version="1.0" encoding="utf-8’>

2 <book>

3 <name>Modern Information Retrieval</name >
4 <author>Ricardo Baeza-Yates </author>

5 <author>Berthier Ribeiro-Neto</author>

6 <Chapter id="1">

7 <name>introduction</name>

8 <pages>1 to 17</pages>

9 <subchapter name="Motivation”>

10 <section>Information Retrieval at the

11 Center of the Stage</section>
12 <section> Information Retrieval versus
13 Data Retrieval </section>

14 <section>Focus of the Book</section>

15 </subchapter>

16 <subchapter name="Past, Present and Future”>
17 <section>Early Developments</section>
18 <section>Information Retrieval in the

19 library</section>
20 <section>

21 The web and Digit Libraries

22 </section>

23 <section>Practical Issues</section>

24 </subchapter>

25 </chapter>

26 <reference>

27 <name>Models and Theories of Information
28 Retrieval</name>

29 <date>April 1998</date>

30 <author>Jim Green</author>

31 </reference>

32 <reference>

33 <name>How to Retrieval Information From
34 Database</name>
35 <date>June 1975</date>

36 <author>Franck Obma</author>

37 </reference>

38 </book>

Figure 1. An XML document example.

XML documents are ordinarily modeled as XML trees because of their hierarchical structure. In
Document Object Model, an XML document is also treated as a Document Object Model tree. The
root element is mapped to the root node of the tree. The containing relationships of elements are
modeled as parent—child relations in the tree. Figure 2 renders the tree structure of XML document
in Figure 1, labeled with Dewey IDs [6].

2.2. Smallest Lowest Common Ancestor

This section presents SLCA, one of the predominant definitions for the results of XML keyword
search. To satisfy a query O, each of the required terms in Q must be matched. SLCA exploits
XML tree model to represent XML data. In the following, we will introduce the fundamental
concepts LCA [6] and SLCA [6].

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1604-1621
DOI: 10.1002/cpe

A NEW INDEXING STRATEGY FOR KEYWORD-BASED XML SEARCH 1607

book
1
name author author chapter reference reference
1.1 1.2 1.3 1.4 1.5 1.6
Modern... Ricardo... Berthier... name pages subchapter subchapter — name date author name date author
1.1.1 1.2.1 1.3.1 1.4.1 1.4.2 1.4.3 1.4.4 1.5.1 1.5.2 1.5.3 1.6.1 1.6.2 1.6.3
introduction 1tol7 section section section section section section section Models... April Jim... OW... June Frank...

14.1.1 1421 1431 1432 1433 1441 1442 1443 1444 1.51.1 1521 1531 1.6.1.1 1621 1.63.1

Information... Information... Focus... Early... Information.. The.. Practical...
1.4.3.1.1 14321 14331 14411 14421 14431 14441

Figure 2. An XML tree labeled with Dewey IDs.

Definition 2.1 Lowest Common Ancestor

Given a keyword query Q= {ky, ..., k,,}, where k; (1 <i <m) is a keyword, and an XML tree Xi;cc, We
assume that V; (1< i <m) is the set of nodes that directly contains keyword k; in X ce. LCA(Q, Xiree) 1S
defined as follows:

LCA(Q, Xiee) = {n|3(vi € V1,..., vy € V), nis the LCA of vy, ... ,v,}.

Definition 2.2 Smallest Lowest Common Ancestor

Given a keyword query Q= {ky, ..., k,,}, an XML tree X ce, SLCA(Q, Xiree) is defined as follows:

SLCA(Q Xuee) = {n|n € LCA(Q Xuee) A—|(E|n/ € LCA(Q Xyee), 11 = n)}

! . ’
where n > n means is n an ancestor of n

3. LEVEL ORDER AND FATHER ENCODING

At present, the most widely used encoding method is the Dewey encoding. In this section, we will
firstly introduce the Dewey encoding. Then, we propose our new XML document encoding strategy
called LAF.

3.1. Dewey encoding

Dewey encoding was introduced by [2] to store and query XML documents at the first time. With
Dewey order, each node is assigned a vector that represents the path from the document’s root to
itself. Each component of the path represents the local order (with local order, each node is assigned
a number that represents its relative position among its siblings) of an ancestor node. Figure 2 is an
XML document tree labeled with Dewey order encoding for the XML document showed in
Figure 1. It is easy to conclude the most crucial benefit of Dewey encoding: it is easy to obtain the
LCA node of arbitrary nodes and judge the relationship of arbitrary two nodes in XML tree.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1604-1621
DOI: 10.1002/cpe

1608 Z.-H. DENG, Y.-Q. XIANG AND N. GAO

Specifically, the LCA node’s Dewey ID is the longest common prefix of these node’s Dewey IDs. To
give an example, Node 1.4.1.1, Node 1.4.3.1.1, and Node 1.4.4.3.1 are three nodes in Figure 2. The
longest common prefix of these nodes is 1.4, so that Node 1.4 is their LCA.

Nevertheless, Dewey order encoding suffers two obvious disadvantages: (i) every subnode keeps its
parent node’s Dewey encoding as its prefix, causing storing redundancy and increasing the space
complexity of XML indices, and (ii) the query-processing algorithm based on Dewey encoding may
cause low efficiency.

3.2. Level Order and Father encoding schema

To overcome the aforementioned two disadvantages of Dewey encoding, we put forward a new
encoding schema for XML documents called LAF, which is short for LAF encoding. LAF encoding
is built on level order tree traversal, a global traversal strategy. When traversing an XML tree by
level order, we firstly visit the root of the tree and then traverse the tree level by level until all of the
nodes in the tree are visited. Figure 3 labels the XML tree by its order of level order traversal. The
level order sequence of XML tree in figure 3 is A, B, C, D, E, F, G, H, L, J; hence, the level order
encoding of these ten nodes should be 0, 1, 2, 3,4, 5,6, 7, 8, 9.

A LAF is a novel labeling schema for XML tree. Each node in the XML tree is signed by a unique
LAF ID. As indicated in Figure 4, a LAF ID is made up by three parts, represented as the level order
sequence number of current node, the level order sequence number of current node’s parent node, and
the level number of current node. Especially, if current node is the root node, its parent node’s level
order sequence number is set to —1. The level number initials from 0, and it increases level by
level. The structure of LAF encoding is illustrated as Figure 4.

The LAF IDs can be stored in a vector with only three dimensions. In Figure 3, It is easy to know
that Node A’s LAF ID is 0-1.0. The reason lies in the following: (i) node A’s level order sequence
number is 0, so the first dimension of LAF vector is 0; (ii) node A is the root of XML tree;
consequently, its parent node’s level order sequence number is set to —1; and (iii) node A is at the
first level of XML tree; therefore, its level number is 0. By parity of reasoning, we can label the tree
in Figure 2 as Figure 5 by using LAF IDs.

Note that the LAF ID for each node in an XML tree is unique because of its solitary level order
sequence number. On the other hand, given the LAF IDs of nodes, it is effortless to build the XML
tree. This is to say, there is a one-to-one mapping relationship between the LAF IDs and the nodes
in an XML tree. The following are some useful properties of LAF encoding.

4. TWO-LAYER INVERTED INDEXING BASED ON LEVEL ORDER AND FATHER ENCODING

An inverted index (also addressed as posting file or inverted file) is an index data structure storing a
mapping from content, such as words or numbers, to its locations in a database file, or in a

>W

D

1 2 3
E F G H I J
4 5 6 7 8 9

Figure 3. Level order encoding on XML tree.

Level order sequence number | Parent node’s level order sequence number | Level number

Figure 4. The structure of Level Order and Father encoding.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1604-1621
DOI: 10.1002/cpe

A NEW INDEXING STRATEGY FOR KEYWORD-BASED XML SEARCH 1609

book
0.-1.0
name author author chapter reference reference
1.0.1 2.0.1 3.0.1 4.0.1 5.0.1 6.0.1
Modern... Ricardo... Berthier.. name pages subchapter subchapter = name date author name date author
7.12 8.2.2 9.3.2 1042 1142 12.42 13.4.2 14.52 1552 1652 17.6.1 18.6.2 19.6.2
introduction 1tol7 section section section section section section section Models... April Jim.. How.. June Frank...

20.10.3 21.11.3 22.12.3 23.12.3 24.12.3 25.13.3 26.13.3 27.13.3 28.13.3 29.14.3 30.15.3 31.16.3 32.17.3 33.18.3 34.19.3

Information... Information... Focus... Early... Information.. The.. Practical...
35224 36.23.4 37244 38254 39.26.4 40.27.4 41284

Figure 5. Level Order and Father encoding example.

document or a set of documents. Inverted index is the most widely used data structure in document
retrieval systems. This section will introduce Dewey encoding-based inverted index firstly; then, we
propose a new index structure based on LAF encoding.

4.1. Dewey inverted index

Dewey inverted index, also referred to as Dewey inverted list, is now the most popular index structure
used in XML document retrieval systems, such as XRANK [4] and XKSearch [10]. The inverted list
for a keyword k contains the Dewey IDs of all the XML elements that directly contain the keyword
k. To handle multiple documents, the first dimension of each Dewey ID should be set as the
document ID. Associated with each Dewey ID entry in Dewey inverted list is the rank of the
corresponding XML element and the list of positions where the keyword k appears in certain
element. The rank here denotes the objective importance of the XML node and can be calculated by
a ranking function such as ElemRank [4]. Figure 6 shows an example Dewey inverted list. Here
‘Retrieval’ and ‘Ricardo’ are two keywords in the document showed in Figure 1. The first column
corresponds to the Dewey IDs of the nodes where the keyword occurs. The second column contains
the ElemRank of the particular occurrences. Moreover, the third column keeps the position of the
occurrence within the node. The entries are sorted by the Dewey IDs.

Dewey encoding-based inverted index is effective for XML document indexing. However, each
node in the tree restores its parent’s Dewey ID as prefix, leading to redundancy and increasing the
space complexity of XML indices. To solve these disadvantages caused by Dewey encoding, in the
following, we introduce a new index structure called two-layer LAF inverted index.

Dewey id ElemRank Position

Ricardo > 1.2.1 34 1
Retrieval —» 1.1.1 46 3
1.4.3.1.1 27 2
1.43.2.1 51 2
14421 54 2
1:5:1:1 19 6
1.6.1.1 3] 3

Figure 6. Dewey inverted list.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1604-1621
DOI: 10.1002/cpe

1610 Z.-H. DENG, Y.-Q. XIANG AND N. GAO

4.2. Two-layer Level Order and Father inverted index

As is known, the ultimate difference between retrieval on plain text and XML document is that XML
documents contain structure information besides content. Therefore, the objective of XML querying is
the elements rather than the entire document. In fact, each XML document contains both plain text and
structure information. Forasmuch, the target of our novel two-layer inverted index is supporting these
two kinds of information to speed up querying efficiency.

Two-layer inverted index includes three components: (i) the LAF encoding table for each XML
documents; (ii) the first layer index, similar to common inverted index; and (iii) the second layer
index, similar to Dewey inverted index. We now present the details of these three parts.

Each LAF encoding table stores all the LAF IDs in the corresponding XML tree. If an XML tree
contains n nodes, its relevant LAF encoding table also consists of n entries. LAF IDs in LAF table
are sorted according to their level order number. LAF encoding table is a crucial part because it
stores the structure information of the XML tree. Table I is an example of LAF table for the XML
tree in Figure 5.

The first layer index is an inverted index built on XML document, similar to common inverted index
except that it should contain a pointer pointing to the second layer index. The first layer index is used to
store the term information in an XML document, such as the document ID and document URL.
Figure 7 shows the structure of the first layer index.

The second layer index is similar to Dewey inverted index. The only difference is that we store the
sequence number of level order of each node instead of its Dewy ID in the second layer index. The
second layer index is used to store the term information in an XML element, such as ElemRank
value. The inverted list in the second layer index is sorted by the level order number. Figure 8
shows the structure of the second layer index.

Table 1. Level Order and Father encoding table.

Level order number Parent node’s level order number Level number
0 -1 0
1 0 1
2 0 1
3 0 1
4 0 1
5 0 1
6 0 1
7 1 2
8 2 2
9 3 2

document | Term frequency in | Pointer pointing to
ID document second layer index

Figure 7. Structure of first layer index.

Level order Term position
ElemRank o
number list in element

Figure 8. Structure of second layer index.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1604-1621
DOI: 10.1002/cpe

A NEW INDEXING STRATEGY FOR KEYWORD-BASED XML SEARCH 1611

Figure 9 is an example of two-layer inverted index to store keywords ‘Ricardo’ and ‘Retrieval” in
Figure 1, whose document ID is set as 1000. The sequence number of level order of nodes
containing these two keywords can be respectively acquired from the XML tree labeled with LAF
IDs in Figure 5.

5. ABS: AN ALGORITHM BASED ON BINARY SEARCH TO COMPUTE SMALLEST
LOWEST COMMON ANCESTORS

In Section 4, we propose a new index structure for XML documents. Originally, index is used to speed
up the query process. Consequently, in this section, we will introduce a new algorithm called ABS,
which is the short for ABS to do keyword query process over XML documents.

5.1. Query processing

The ABS is designed based on two-layer LAF inverted index. In this paper, we consider that the
returned results for a given query should contain all keywords’ matches. Therefore, the key
procedure of ABS is as follows. Firstly, we select the document that contains all keywords through
the first layer index. This process can reduce enormous quantity of useless elements contained by
those irrelevant documents. Secondly, for each selected relevant document, the corresponding
inverted element information list for each keyword is procured through the second layer index.
Thirdly, we merge and sort these lists by descending order of the level order number for all the
keywords in each document. Finally, the procedure goes through the union list in a single pass to
obtain the SLCAs for query Q inner each document. Figure 10 shows the pseudo-code of ABS.

5.2. Case study

The core data structure of ABS is the union list (line 6) sorted by element’s level order number in
descending order. We now walk through the algorithm by using an example. Consider the two-layer
LAF inverted index shown in Figure 9 and a keyword query ‘Ricardo and Retrieval’. Firstly, the
procedure selects the document lists of these two keywords through the first layer index (line 2). It
is easy to know that L, ={1000}, L,= {1000, 1001, 1002}. Secondly, the intersection L, of these
two document lists is computed to {1000} (line 3). Thirdly, for each document in Ly(line 4),
document 1000 for example, the procedure obtains the inverted element list for keyword ‘Ricardo’
as Figure 11 and ‘Retrieval’ as Figure 12 (line 5); finally, these two element inverted lists are
merged as Figure 13 (line 6).

Now, the algorithm processes the entries in the union list in sequence (lines 8-22). The algorithm
initially scans the first entry with the largest level order number and then removes it from the union
list, so element 39 (here we label an element by its level order number) is removed from union list
(line 9). Then, the algorithm checks that element 39 only contains one keyword ‘Retrieval’ (line 10).
Afterwards, the algorithm obtains the parent’s level order number of element 39 through the LAF

Level order

Document id frequency Pointer ElemRank Position
number

Ricardo o 000 [0] 0 o 8 | 34 1
Retrieval —»{ 1000 6 2 » 7 46 3
1001 29 19 6

1002 32 31 3

35 27 2

36 M| 6

39 54 2

Figure 9. Two-layer Level Order and Father index.
Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1604-1621

DOI: 10.1002/cpe

1612 Z.-H. DENG, Y.-Q. XIANG AND N. GAO

1 SLCA_Query_Process (K, K, ..., K,){

2 For each keyword Kj, get its document list L; through the first layer index;

3 Ly=intersection(Ly, Lo, ..., L,); // get the intersection of Ly, Lo, ..., L,

4 For each document D; in Ly {

5 For each keyword Kj, get its element inverted list EL; through the second layer index;

6 ELy=union(EL,, EL,, ..., EL,); // merge EL,, EL,, ..., EL, and is EL, ordered from
// big to small according to level order number

7 Get the LAF encoding table laf_table_i for D; by the ID of D;;

8 While ELy is not empty {

9 Get and remove the first element Ej,, from ELy;

10 If Ej is not marked with slca_flag and contains all the keywords

11 Add Ej to resultList, mark with Eg,, slca_flag.

12 Get Ejiry‘s parent Epqen;

13 If E,4ren's level order number = -1;

14 Return resultList;

15 Else

16 add Ejyy ‘s status to Epgrens

17 Pos = BinarySearch(E g en; ELo); // return the right position of E,e.
// through binary search on ELj.

18 If(ELO[POS]:: Ep{zmm)

19 add Ejgren s status to ELy[Pos];

20 Else

21 Insert E,4yen, into ELg[Pos]

22 }

23}

24}

Figure 10. The pseudo-code of Algorithm based on Binary Search.

8 34 1

Figure 11. Inverted element list for Ricardo.

7 46 3
29 19 6
32 31 3
35 27 2
36 51 6
39 54 2

Figure 12. Inverted element list for Retrieval.

level order number| I retrieval Ricardo | | slca_flag
39 54 2
36 51 6
35 27 2
32 31 3
29 19 6
8 34 1
7 46 3

Figure 13. Union inverted element list of Ricardo and Retrieval.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 201

3; 25:1604-1621
DOI: 10.1002/cpe

A NEW INDEXING STRATEGY FOR KEYWORD-BASED XML SEARCH 1613

encoding table of document 1000. From Figure 5, we can know that the parent’s level order number of
element 39 is 26. Therefore, the procedure adds the status of element 39 to element 26, in which the
entry for element 26 is shown in Figure 14 (lines 13-16). Then, the algorithm searches for the
appearance of element 26 in the union list through binary search (line 17), discovering that there is
no existing entry for it. Therefore, a new entry of element 26 is inserted into the union list right
between element 29 and element 8 according to the descending sequence of the list. The modified
union list is as figure 15.

As long as the union list is not empty, the algorithm continues processing the next entry element 36.
The process of dealing with element 36 is the same as to element 39. After the process, the new union
list is shown in Figure 16.

The next entry is element 35. The parent’s level order number of element 35 is element 22. The
process of element 35 is the same as to element 39, too. After the process, the new union list is
shown in Figure 17.

Then, the algorithm processes the elements 32, 29, and 26 in sequence. After processing, the status
of the union list is shown in Figure 18.

Because elements 23 and 22 share the same parent, the size of union list reduces by 1, and the new
union list after removing these two elements is shown in Figure 18. Element 12 is the common parent
of elements 23 and 22; however, element 12 only keeps the status of element 22 because elements 23
and 22 contain the same keyword and element 22 is nearer to element 12 (22-12 < 23-12). Figure 19
shows the union list after processing elements 23 and 22.

Then, the algorithm goes on processing elements 17, 14, 13, 12, 8, and 7. The result is shown in
Figure 20.

o [[2] | |

Figure 14. Parent element of element 39.

|level order number] | retrieval | Ricardo] I slca_flag |
36 51 6
35 27 2
32 31 3
29 19 6
26 54 2
8 34 1
7 46 3

Figure 15. Union list after processing element 39.

[level order number | | retrieval Ricardo | [slca_flag
35 27 2
32 31 3
29 19 6
26 54 2
23 Sl 6
8 34 1
7 46 3

Figure 16. Union list after processing element 36.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1604-1621
DOI: 10.1002/cpe

1614

Z.-H. DENG, Y.-Q. XIANG AND N. GAO

I level order number | I retrieval | Ricardo I | slca_flag
32 31 3
29 19 6
26 54 2
23 51 6
22 27 2
8 34
7 46 3
Figure 17. Union list after processing element 35.
| level order number | I retrieval | I Ricardo l I slca_flag
23 51 6
22 27 2
17 31 3
14 19 6
13 54 2
8 34
7 46 3

Figure 18. Union list after processing elements 32, 29, and 26.

[level order number | | retrieval | [Ricardo | [slca_flag |
17 31 3
14 19 6
13 54 2
12 27 2
8 34
7 46 3
Figure 19. Union list after processing elements 23 and 22.
level order number | | retrieval Ricardo | I slca_flag
6 31 3
N 19 6
4 27 2
2 34
| 46 3

Figure 20. Union list after processing 17, 14, 13, 12, 8, and 7.

After processing elements 6, 5, and 4, the result is shown in Figure 21.

Then, the algorithm processes element 2, after removing element 2 from the union list and adding its
status to its parent element 0. The result is shown in Figure 22.

Then, the algorithm processes element 1, after removing element 1 from the union list and adding its
status to its parent element 0. The result is shown in Figure 23.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1604-1621

DOI: 10.1002/cpe

A NEW INDEXING STRATEGY FOR KEYWORD-BASED XML SEARCH

1615

level order number] | retrieval Ricardo | I slca_flag]
2 34
1 46 3
0 27 2
Figure 21. Union List after processing 6, 5, and 4.
level order number | I retrieval I Ricardo] I slca_flag I
1 46 3
0 27 2 34
Figure 22. Union list after processing element 2.
| level order number | I retrieval | I Ricardo | I slca_flag I
Lo [4 [3 [34 | |

Figure 23. Union list after processing element 1.

Afterwards, the algorithm processes element 0. The algorithm removes element O from the union list
and then detects that element O contains all the keywords. Next, element O is added to result list and
marked with slca_flag (lines 10-11). Finally, the algorithm returns the result list in respect that the
parent of element 0 is —1 (line 14).

Because the document list Ly contains only one document, the algorithm finishes processing the
query. Eventually, the SLCA result for Q (Ricardo and Retrieval) is {1000.0}. Here, 1000 is the
document ID, and 0 is the level order number of element in document 1000.

5.3. Analysis

5.3.1. Correctness. The elements computed out by the program SLCA_Query_Process must be
SLCA nodes, and the SLCA nodes for the certain relevant document D must be exported by
SLCA_Query_Process.

According to the procedure of ABS, the output elements absolutely contain all keywords in the
query. On the other hand, only when an element does not contain all keywords in the query its
parent element can be inserted into the union list. This rule guarantees that the no offspring of the
output element is an SLCA. Thus, according to Definition 2.2, the output elements are SLCAs.

Given an SLCA node n in document D, there must be a vector V=(ky, ky, ... k,) that matches the
keywords in query, respectively, in which k; is an arbitrary match in element n for keyword K;. When
dealing with the element that directly contains k;, the process will trace back to its parent element
because it does not contain all keywords. The same tracing process happens to the parent element if
it does not contain all keywords either. The tracing operation ends when detecting node n because it
conforms to the definition of SLCA node. As a result, all SLCA nodes in D could be exported by
the algorithm SLCA_Query_Process.

5.3.2. Time complexity. According to the program SLCA_Query_Process, the time complexity of
computing the SLCA nodes of a relevant document D is O(mllogm), where m is the number of
elements in D that contains keyword matches and [is the largest level number of these elements.
The process loop computing SLCA nodes starts at line 4 and ends at line 23. In line 6, the inverted
lists of keywords are united by the elements’ level order number in descending order. The time

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1604-1621

DOI: 10.1002/cpe

1616 Z.-H. DENG, Y.-Q. XIANG AND N. GAO

Table II. Details of the data sets.

Number of documents Data set size (KB) Total elements Total keywords
500 9505 210801 455612
1000 18775 421458 887186
1500 27775 622793 1313850
2000 37001 827797 1745227

complexity of the sorting process is O(mlogm). The algorithm then needs to deal with each of the
elements in the union list. The worst circumstance is that the root node is the only SLCA node. In
this case, besides the elements that directly contains keywords, their ancestor nodes are added to the
union list. Hence, the loop in line 8 could be possible to run (m!+ 1) times. While entering the loop,
the number of elements in union list will not be more than m because only after removing an
element, its parent element’s entry can be inserted. Therefore, the time complexity of the
BinarySearch operation in line 17 is O(m). Thus, the while loop in line 8 represents O(mllogm)
complexity. Overall, the time complexity of computing SLCA nodes for a relevant document D is O
(mllogm).

6. EXPERIMENTAL STUDY

We now experimentally evaluate the techniques presented in this paper. Firstly, we introduce the
experimental environment and the XML data set used in this paper. Second, we compare two-layer
LAF inverted index and traditional Dewey encoding-based inverted index in aspect of space
efficiency. Finally, we do a comparison on query performance between traditional Stack algorithm
[6] and ABS. It should be noted that the goal of our experiment is to show that the LAF ID is an
efficient coding method for XML keyword search. Therefore, we choose SLCA, one of predominant
query semantic, and Stack algorithm, one of predominant query algorithm for SLCA in our
experiment.

6.1. Experimental setup

We conduct our experiments on the XML data set of Wikipedia English, which is the standard data set
used by the Initiative for the Evaluation of XML Retrieval.’ The comparison experiments are based on
four data sets, including 500, 1000, 1500, and 2000 XML documents, respectively. The corresponding
sizes for each data set are 9505, 18775, 27775, and 37001 KB. Table II displays the details of the data
sets we used. We select XML data from Wikipedia as experimental collection because these data sets
are all made up by small pieces of XML documents. The average size of documents in the collection is
about 19 KB.

We build traditional Dewey encoding-based index and two-layer LAF inverted index, both stored in
Berkeley DB." Then, we implement the Stack algorithm to compute SLCA results on traditional index
and ABS on two-layer LAF inverted index. The experiments are performed on a 1.8-GHz Pentium
Dual processor running Microsoft Windows XP operating system with 2.0 GB memory and 160 GB
of disk space. The system is implemented in C++.

6.2. Space performance

The space of two-layer LAF Inverted index is made up by the space of the first layer index, second
layer index, and LAF tables. Table III shows the details of space performance of two-layer inverted
index. From Table III, we can see that the total size of two-layer LAF inverted index for each data
set is a little larger than the original data set. Figure 24 shows the space requirements for two-layer
index based on LAF encoding and Dewey inverted index, noting that the size of Dewey inverted

Shttp://www.inex.otago.ac.nz/data/documentcollection.asp>.
Thttp://sleepycat.com

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1604-1621
DOI: 10.1002/cpe

http://sleepycat.com
http://sleepycat.com

A NEW INDEXING STRATEGY FOR KEYWORD-BASED XML SEARCH 1617

Table III. Details of space performance of two-layer Level Order and Father (LAF) inverted index.

Size of first layer Size of second layer Size of LAF Total size of two-layer

Data set size (KB) index (KB) index (KB) tables (KB) inverted index (KB)
9505 3098 6324 2145 11576
18775 5892 12410 4304 22606
277175 8723 18445 6324 33492
37001 11425 24484 8437 44346

120000

90000 —

I
i
e B

1 2 3 4

space(KB)

I:l original data set B Two-Layer LAF index O Dewey inverted index

Figure 24. Space performance comparison.

index is about twice that of two-layer LAF index. There are two reasons for this difference. The first
reason is that the length of Dewey ID increases as the element gets deeper. For example, in
Figure 2, element ‘1.4’ whose depth is 2 needs two integers to record its Dewey ID. On the other
hand, the element ‘1.4.3.3.1” whose depth is 5 needs five integers to record its Dewey ID, whereas
the length of LAF ID for any element is a constant value 3. The second reason is that Dewey
inverted index contains only one layer index building on elements rather than documents, so that
many document features (such as document ID, document length and document URL, and so on)
are stored repeatedly. However, these features are stored only once in two-layer LAF inverted index.

6.3. Query performance

In this section, the performances of ABS and Stack algorithm are evaluated. We design our
experiments in two different criterions: (i) various numbers of keywords on the same data set
(i1) same amount of keywords on different data sets.

Figures 25-27 indicate the performances of Stack algorithm and ABS by querying two—four
keywords on different data sets, respectively. As can be seen, ABS algorithm performs much better
than Stack algorithm. There are two explanations for this phenomenon. Firstly, the Stack algorithm
processes large quantity of meaningless elements included by those documents that do not contain
all the keywords. On the contrary, ABS selects the documents containing all keywords at first, and
then, the SLCAs are computed inner the documents, avoiding to processing the meaningless
elements. Another cause is that the time complexity of comparing two Dewey IDs is O(n) (n is the
length of Dewey IDs); however, the time complexity of comparing two level order number is O(1).

Figures 28-31 show the performances of Stack algorithm and ABS by querying two—four keywords
on data sets 1(9505 KB), 2(18775 KB), 3(27775 KB), and 4(37001 KB), respectively. In these four
figures, we can conclude that the time complexity of Stack algorithm on the same data set increases
with the increment of keywords. However, the time complexity of ABS decreases as the number of

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1604-1621
DOI: 10.1002/cpe

1618 Z.-H. DENG, Y.-Q. XIANG AND N. GAO

8
_, /////////0
el
=
o
§ 4 / —&— STACK
& —8— ABS
g
= 2 r's

Jo m— A—_—I———.

9505 18775 27775 37001
different size data set (KB)

Figure 25. Two keywords on different data set.

12

10 &-
) _
s 8
o
3 p / —e— STACK
K= / —m— ABS
Q
g 4 /

2
= a o | |
9505 18775 27775 37001
different size data set (KB)

Figure 26. Three keywords on different data set.

b

o

12
10 Plad
2 /
2 8
S
2 / —e— STACK
é —®— ABS
Q
£

0 L—m=

= B

9505

18775

27775

37001

different size data set (KB)

Figure 27. Four keywords on different data set.

keywords increases on the same data set. This is because that with the increasing of keywords, the
number of elements containing these keywords increases, leading to more meaningless elements that
should be processed by the Stack algorithm. On the contrary, with the addition of keywords, the
number of documents containing all of these keywords decreases, which means that the meaningful
elements contained by these documents decrease. As a results, the efficiency of ABS increases with
the increment of keywords.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1604-1621

DOI: 10.1002/cpe

A NEW INDEXING STRATEGY FOR KEYWORD-BASED XML SEARCH 1619

)

=

=

3

2 —e— STACK
8 —®— ABS

:

2 3 4
keywords number
Figure 28. Different keywords on data set 1.

2

=

=

it

%
k= —=— ABS

(5]
£
2 3 4
keywords number

Figure 29. Different keyword on data set 2.

—e— STACK
—=— ABS
2 3 4

keywords number

time (in seconds)
S = N W R N 0 O

Figure 30. Different keywords on data set 3.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a new encoding schema called LAF for XML documents, which can
overcome the shortcomings of Dewey encoding. Afterwards, we designed a new index structure

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1604-1621
DOI: 10.1002/cpe

1620 Z.-H. DENG, Y.-Q. XIANG AND N. GAO

12

11 —_——=

10
—~ 9 el
122}
2 8
g -
S 7
2 6 +STACK|
& 5 —=— ABS
g 4
g 5

2

1

0 — =]

2 3 4
keywords number

Figure 31. Different keywords on data set 4.

called two-layer LAF-based inverted index. With LAF, we devised a new algorithm called ABS for
finding SLCA efficiently. The extensive experiment results showed that our new method
demonstrates outstanding space performance and time performance.

For the future work, there are many interesting research issues. Firstly, we will integrate LAF with
some state-of-the-art algorithms, such as IMS [23], JDewey [15], DIL [2], IL [6], Scan [6], IS [8], and
HC [27], to establish a series of efficient algorithms for various query semantic models. Secondly, we
will extend LAF into graph models because XML documents should be a graph when we consider the
links between documents. Finally, to rank results efficiently, we will study how to adopt suitable
ranking functions in the two-layer LAF inverted index.

ACKNOWLEDGMENT

This work is partially supported by Project 61170091 supported by the National Natural Science Foundation
of China and Project 2009AA01Z136 supported by the National High Technology Research and
Development Program of China (863 Program).

REFERENCES

1. Beyer K, Viglas SD, Tatarinov I, Shanmugasundaram J, Shekita E, Zhang C. Storing and querying ordered XML
using a relational database system. In ACM SIGMOD’02, 2002.
2. Guo L, Shao F, Botev C, Shanmugasundaram J. XRANK: ranked keyword search over XML documents. In ACM
SIGMOD’03, 2003.
3. Feng J, Li G, Wang J, Zhou L. Finding and ranking compact connected trees for effective keyword proximity search
in XML documents. Information Systems, 2009.
4. Li G, Feng J, Wang J. Effective keyword search for valuable LCAs over XML documents. In ACM CIKM’07, 2007.
5. Li G, Li C, Feng J, Zhou L. SAIL: structure-aware indexing for effective and progressive top-k keyword search over
XML documents. Information Sciences, 2009.
6. Xu Y, Papakonstantinou Y. Efficient keyword search for smallest LCAs in XML databases. In ACM SIGMOD’05,
2005.
. Sun C, Chan CY, Goenka AK. Multiway SLCA-based keyword search in XML data. In WWW’07, 2007.
. Xu Y, Papakonstantinou Y. Efficient LCA based keyword search in XML data. In ACM CIKM’07, 2007.
. Huang Y, Liu Z, Chen Y. Query biased snippet generation in XML search. In ACM SIGMOD’08, 2008.
. Kong L, Gilleron R, Lemay A. Retrieving meaningful relaxed tightest fragments for XML keyword search. In
EDBT’09, 2009.
11. Liu Z, Chen Y. Identifying meaningful return information for XML keyword search. In ACM SIGMOD’07, 2007.
12. Liu Z, Chen Y. Reasoning and identifying relevant matches for XML keyword search. In VLDB’08, 2008.
13. Liu Z, Chen Y. Return specification inference and result clustering for keyword search on XML. ACM TODS 2010;
35(2). DOI: 10.1145/1735886.1735889.
14. Liu Z, Huang Y, Chen Y. Improving XML search by generating and utilizing informative result snippets. ACM
TODS 2010; 35(3).
15. Chen L, Papakonstantinou Y. Supporting top-K keyword search in XML databases. In IEEE ICDE’10, 2010.
16. Yu H, Deng Z, Xiang Y, Gao N, Ming Z, Tang S. Adaptive top-k algorithm in SLCA-based XML keyword search. In
APWeb’10, 2010.
17. Grimsmo N. Faster path indexes for search in XML data. In ADC’08, 2008.
18. Harder T, Haustein M, Mathis C, Wagner M. Node labeling schemes for dynamic XML documents reconsidered.
Data & Knowledge Engineering 2007; 60(1):126—149.

S O 0

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1604-1621
DOI: 10.1002/cpe

A NEW INDEXING STRATEGY FOR KEYWORD-BASED XML SEARCH 1621

19. Luk RWP, Leong HV, Dillon TS, et al. A survey in indexing and searching XML documents. Journal of the
American Society for Information Science and Technology 2002; 53(6):415-437.

20. O’Neil PE, O’Neil EJ, Pal S, Cseri I, Schaller G, Westbury N. ORDPATHs: insert-friendly XML node labels.
In ACM SIGMOD’04, 2004.

21. Xu L, Ling TW, Wu H, Bao Z. DDE: from Dewey to a fully dynamic XML labeling scheme. In ACM SIGMOD’09,
2009.

22. Bao Z, Ling TW, Chen B, Lu J. Effective XML keyword search with relevance oriented ranking. In IEEE ICDE’09,
2009.

23. Bao Z, Lu J, Ling TW, Chen B. Towards an effective XML keyword search. IEEE Transactions on Knowledge and
Data Engineering 2010; 22(8):1077-1092.

24. Huang Y, Liu Z, Chen Y. eXtract: generating query biased result snippet for XML search. Demo description.
In VLDB’08, 2008.

25. Liu ZY, Walker J, Chen Y. XSeek: a semantic XML search engine using keywords. In VLDB’07, 2007.

26. Xiang Y, Deng Z, Yu H, Wang S, Gao N. A new indexing strategy for XML keyword search. In FSKD’10, 2010.

27. Zhou R, Liu C, Li J. Fast ELCA computation for keyword queries on XML data. In EDBT’10, 2010.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1604-1621

DOI: 10.1002/cpe

