
www.ietdl.org
Published in IET Software
Received on 6th May 2011
Revised on 26th October 2011
doi: 10.1049/iet-sen.2011.0082

ISSN 1751-8806

Efficient top-k algorithm for eXtensible Markup
Language keyword search
H. Yu Z.-H. Deng N. Gao
Key Laboratory of Machine Perception (Ministry of Education), School of Electronics Engineering and Computer Science,
Peking University, Beijing 100871, People’s Republic of China
E-mail: zhdeng@cis.pku.edu.cn

Abstract: The ability to compute top-k matches to eXtensible Markup Language (XML) queries is gaining importance owing to
the increasing of large XML repositories. Current work on top-k match to XML queries mainly focuses on employing XPath,
XQuery or NEXI as the query language, whereas little work has concerned on top-k match to XML keyword search. In this
study, the authors propose a novel two-layer-based index construction and associated algorithm for efficiently computing top-
k results for XML keyword search. Our core contribution, the two-layer-based inverted Index and associated algorithm for
XML keyword search take both score-sorted-sequence and Dewey ID-sorted-sequence into consideration, and thus gain
performance benefits during querying process. The authors have conducted expensive experiments and our experimental
results show efficiency advantages compared with existing approaches.
1 Introduction

In recent years, the ability to compute top-k answers to
eXtensible Markup Language (XML) queries is gaining
considerable attention owing to the rapid growth of XML
repositories. Top-k query evaluation on exact answers is
appropriate when the answers are large and users are only
interested in the highest-quality matches. Currently research
on top-k answers to XML queries mainly concentrate on
structural query languages, such as W3C’s XQuery 1.0 and
XPath 2.0 Full-Text or NEXI [1–4] that combine content
conditions on elements with structural conditions like tag
names and paths. However, motivated by the prevailing
search engines, such as google and yahoo, keyword search
has been proven to be friendly and widely accepted by
common users. Compared to structure-based queries,
keyword-based queries do not request the users to acquaint
the exact structure of the XML documents, or previous
knowledge for the corresponding query language, which is
accessible to naive users. Nevertheless, keyword query also
has its own disadvantages: since the query only contains a
bag of words, it lacks expressivity to offer structural
information for searching results in hierarchical XML
documents. In addition, keyword search would also induce
inherent ambiguity when interpreting the semantics in XML
data. Thus we need to automatically connect the matched
nodes in a reasonable way in order to incorporate users’
intention and effectively identify the desired return
information. The results of XML keyword search have been
deeply discussed. One essential point of view for keyword-
query results to XML documents is that the query results
should achieve both completeness and accuracy. To achieve
this goal, started from the notion of Lowest Common
342

& The Institution of Engineering and Technology 2012
Ancetor (LCA), many corresponding papers have been
published to demonstrate query semantics, such as
Exclusive Lowest Common Ancestor (ELCA) [5],
Meaningful LCA (MLCA) [6], Smallest LCA (SLCA) [7],
Grouped Distance Minimum Connecting Tree (GDMCT)
[8], XSeek [9], Valuable LCA (VLCA) [10] and so on.
These methods are raised to improve the efficiency
and effectiveness of results for keyword queries in
XML documents. All of these approaches concentrate on
the granularity of nodes in XML documents, which is
in contrast to the granularity of the whole documents in
traditional html keyword search. Thus top-k applied in
XML keyword query introduces some new challenges.
Classic top-k algorithms could not be incorporated into
XML keyword search seamlessly. One crucial problem is
that we have to dynamically construct the potential structure
for the sub-tree results through given keywords on query
processing, which is seldom taken into consideration in
former corresponding top-k research. This disadvantage
calls for efficient strategy to implement sub-tree generation
during query process.

So taking all the aspects raised above into account, we
make the following contributions to implement adaptive
top-k algorithm in SLCA-based XML keyword search:

1. We carefully design a two-layer-based inverted (TLI)
index structure to store XML documents for efficiently
querying top-k answers through XML keyword search.
2. Based on the index structure we raised, we introduce
corresponding algorithm named XTop for XML keyword
search, which generates top-k results through keyword
queries efficiently.
IET Softw., 2012, Vol. 6, Iss. 4, pp. 342–349
doi: 10.1049/iet-sen.2011.0082

www.ietdl.org
3. We conduct extensive experiments and the experimental
results show that our approach exhibits efficiency
advantages compared to naive approach without top-k
strategy or other realisations for top-k applied in XML
keyword search.

Although XTop algorithm was first proposed briefly in
[11], this paper makes additional progress as follows.

1. We thoroughly discuss the work related to Top-k systems
and deeply introduce the prelimitaries such as the data model,
query semantic and BM25 score function.
2. We explicitly introduce and discuss the TLI index and the
associated algorithm XTop. The content used for explaining
and analysing these two parts becomes doubled compared
with [11].
3. Extended experimental results have been reported. We
examine the efficiency of our Top-k algorithm with other
two baselines on the dataset of DBLP and Wikipedia. The
scalability of the algorithm is tested on four groups:
keywords with low frequency, medium frequency, high
frequecy and mixed frequency.

In Section 2, we discuss related work dealing with top-k
applied in XML keyword search field. Section 3 mainly
talks about some preliminaries such as data model, query
semantic and corresponding score function for XML
sub-tree results. In Section 4, we illustrate the approach for
index construction, and associated XTop algorithm will be
proposed in Section 5. Our experimental results will be
discussed in Section 6. The final section, Section 7, will
draw conclusion and discuss future work.

2 Related work

As far as we know, some previous works have taken efforts to
resolve top-k applied in XML keyword search. We notice that
Top-X system [3, 4] and XRank system [5] have discussed the
similar issue.

2.1 Keyword queries applied in Top-X system

Top-X search engine is generally a framework for unified
indexing and querying large collections of unstructured,
semi-structured, and structured data. It has integrated
efficient scheduling and dispatching algorithms for top-k
ranked retrieval with corresponding scoring models. Top-X
has discussed the issue of querying methods by two
categories – content-and-structure (CAS) query and
content-only (CO) query. As [2] has depicted, a typical
example for a CAS query is like the NEXI query //article//
section[about(., ‘XML database’) and (. // figure,
‘architecture’)] that searches for article sections about XML
database (which is a content condition) that include a figure
about the architecture (i.e. that has this term somewhere in
its content). And a typical example for a CO or wildcard
queries like //∗[about (., ‘XML’)] do not restrict the tag of
target elements – which is similar to keyword queries in
text retrieval. Thus CO in Top-X system is generally an
approximate approach to XML keyword search. However,
since top-X system do not assign specific algorithm for CO
query and CAS query, respectively, CO query still
‘borrows’ the structure-based CAS query process which
performs O (|S1|. . .|SK|) complexity to obtain the results
within one document (suppose given a list of keyword
w1, . . . , wK and Si(1¼,i,¼k) denotes the list of nodes that
IET Softw., 2012, Vol. 6, Iss. 4, pp. 342–349
doi: 10.1049/iet-sen.2011.0082
directly or indirectly contains wi in one document). Since
the prevailing XML keyword search algorithms such as
Stack Algorithm [5] and IL (Index Lookup Eager
Algorithm) [6] have gained linear complexity for generating
sub-tree-based results such as SLCA and so on, thus it is
not an efficient approach for top-X’s realisation for top-k
generation in XML keyword search. What is more, top-X
could not construct sub-tree automatically without structural
information, but merely returns individual nodes that
contains the corresponding keywords instead of sub-tree
results. So top-X is not an effective approach to generate
top-k ranked results through keyword search.

2.2 Keyword queries applied in XRank system

XRank [5] is designed to query over a mix of HTML and
XML documents. XRank is meant to handle some novel
features of XML keyword search such as (a) the results are
deeply nested XML elements instead of entire documents,
(b) the notion ranking is at the granularity of an XML
element instead of a document and (c) the notion of
keyword proximity is more complex in the hierarchical
XML data model. XRank system also attempts to obtain the
top-k answers by employing Ranked Dewey Inverted List
(RDIL) raised in [5]. In their estimation, the approach for
applying top-k strategy to XML keyword search is to order
the inverted lists by the score of each individual element,
which is calculated previously. In this way, higher ranked
elements are likely to appear first in the inverted lists, and
query processing can usually be terminated without
scanning all of the inverted lists. However, since the
inverted lists are ordered by scores instead of by Dewey
IDs, it calls for an extra construction for efficiently
obtaining the common ancestor for elements. What is more,
since the inverted lists are organised at the granularity of
elements, it has to maintain a list of some length organised
on elements and apply more random access to the inverted
lists to obtain the corresponding nearest nodes to generate
the sub-tree results [5]. As has discussed in [3], owing to
the characteristic of hardware situation, random access
should be carefully used in order not to cost efficiency loss.
Taking these defects into account, in our approach, our
algorithm takes advantage of the two-layer-based index
construction and incorporates corresponding efficient
algorithm for efficiently generating top-k results.
Corresponding experimental comparison will be shown in
Section 6.

3 Preliminaries

In this part, we mainly talk about three issues as preliminaries
for our work. They are data model, query semantic and score
function.

3.1 XML data model

The XML is a hierarchical format for data representation and
exchange. An XML document consists of nested XML
element starting with the root element. Each element can
optionally have nested sub-elements, values or attributes.
We treat the attributes and values as the children of the
corresponding element. Fig. 1 is just an example of XML
document, modelled as a dom tree.

We use Dewey ID to encode elements in XML documents.
Dewey ID is a prefix-based encoding. With Dewey ID each
element is assigned an id that represents its relative position
343

& The Institution of Engineering and Technology 2012

www.ietdl.org
Fig. 1 Library.xml
among its siblings. The bit sequence from the root to an
element unique identifies that element. Dewey ID captures
ancestor-descendant information as well. With Dewey ID
we could easily obtain the relationship of arbitrary two
nodes. For example, in Fig. 1, 0.0.1 is 0.0.0’s sibling node,
and 0.0 is 0.0.1’s ancestor. Dewey ID has been widely
applied in many XML-related algorithms and demonstrated
to be a good approach to represent and cope with XML
data. In our index and corresponding top-k generating
algorithm, we employ Dewey ID as our labelling method.

3.2 Query semantic

Keyword search in text documents takes the documents that
are most relevant with the input keywords as answers.
Respectively, for keyword search in XML documents,
prevailing opinions on this issue focus on returning
meaningful compact connected sub-trees which contain all
the keywords as results. This calls for us to automatically
connect the match nodes in a meaningful way and identify
the desired return information. In tree-based model, LCA
semantics [12] is the basic. Started from the notion of LCA,
many corresponding papers have been published to
demonstrate query semantic, such as ELCA, SLCA, VLCA
and so on. These methods are raised to improve the
efficiency and effectiveness of results for keyword queries
in XML documents. Among all these structure-based query
semantic, SLCA is a frequently referenced query semantic
and serves as a crucial result option. Thus here let us have
a glance at the definition of SLCA. The result of SLCA
model must satisfy two restrictions:

1. The results of SLCA should contain all keywords either in
their labels or in the labels of their descendant node.
2. They have no descendant node that also contains all
keywords.

SLCA has its own reasons: more specific results connect
keywords more closely and so they could offer a better
explanation about the query. Take the XML tree in Fig. 1
as an example, each node is encoded with its corresponding
Dewey ID. Suppose the query keywords are ‘martin’ and
‘john’, then node 0.0.0 with tag ‘writer’ is returned as
SLCA result whereas node 0 with tag ‘library’ is not. Since
node 0.0.0.0 contains keyword ‘martin’, node 0.0.0.1
contains keyword ‘john’, thus node 0.0.0 contains all these
two keywords and compensates the ‘smallest’ principle
according to SLCA definition. In the meanwhile, node 0
with tag ‘library’ is not taken as a SLCA node since one of
its descendants (node 0.0.0) has already contains all
keywords, thus node 0 should not meet up the ‘smallest’
requirement to emerge as a SLCA node. In addition to
344

& The Institution of Engineering and Technology 2012
these attempts made on automatically connecting the match
nodes in a meaningful way, Liu and Chen [9] have
attempted to effectively identify the desired information that
accord with the users’ intention. However, existing
approaches focus on node selection in the sub-trees
generated SLCA nodes, acting as a post-processing after
original sub-tree result generation. Thus in this paper, we
mainly introduce how to incorporate SLCA query semantic
into our top-k ranked result generation strategy. In fact our
architecture can also be applied to the other sub-tree-based
query semantics as we have listed above, since our realised
approach is flexible and sub-tree generation process is,
respectively, independent of other processing steps, which
will be illustrated later in Section 6.

3.3 Score function

In a search engine, the top-k algorithm is used to improve the
efficiency, and the score function is the key part determining
the effectiveness (precision and recall). In particular, the
critical issue of score function applied in XML documents
is to evaluate the inner hierarchy of XML tree into
consideration. The score function should reflect both
content information and structural information to obtain an
overall score for each term and its corresponding ancestor
tags. Another factor we have to notice is that a basic
restriction for prevailing top-k algorithms calls for
monotonous scoring function to aggregate each individual
keyword’s score. Among the many proposed score
functions, we consider XML-specific variant of Okapi
BM25 referenced in [4] is an applicable approach that
meet all the requirements raised above. The definition of
Okapi BM25 is as follows

score(A//′′t1 . . . tm
′′, e) =

∑m

i=1

(k1 + 1)ftf (ti, e)

K + ftf (ti, e)

× log
NA − ef A(ti) + 0.5

ef A(ti) + 0.5

with K = k1 (1 − b) + b
length(e)

avge′{length(e′)|e′ with tag A}

()

Here we will not bother to talk about its principle and
realisation any more. More detailed information could be
found in [4]. Thus in our realisation, we employ the score
function which is also applied in [3, 4]. In the following
parts, we will simply use S(tag, term) to denote score
computed for a pair of tag and term, and our index
construction and system algorithm will also be stated based
on pre-computed scores.
IET Softw., 2012, Vol. 6, Iss. 4, pp. 342–349
doi: 10.1049/iet-sen.2011.0082

www.ietdl.org
4 Index construction

4.1 Pre-processing on single large document

For dealing with various data sets published in the web, we
often meet up with some document that is pretty large in
size for a single XML document. For example, the DBLP
document is 487 M in a single document, whereasthe
Wikipedia (English version) is over 1 G in size. Since the
query results are often just a small sub-tree or a fragment
of the XML document tree, it is inaccessible to return the
whole large document or a sub-tree that contains too many
elements. We attempt to take some pre-measures to deal
with this kind of single large XML document. One intuitive
method is to split the large XML documents into small
ones. However, this needs careful check in order not to
break the inner relationship and structural information that
the XML documents hold. We have attempted to employ
some IR concepts dealing with mark-ups in XML
documents for automatically applying file-splitting.
Researches on applying IR concepts to XML data has been
studied for several years [1, 8, 13] and introduces several
concepts into XML contexts and mark-ups. Here we
employ some ideas in [13]. As [13] have defined, node
papers in Fig. 2 is a structural node since it is labelled with
a tag name and paper nodes are multi-valued nodes since it
has more than one occurrence within its parent node. We
consider that the parent of multi-valued nodes is just taking
structural function and uniting the nodes with the same tag.
Based on this thought we parse single large XML
document and split them into small pieces by taking multi-
valued nodes as the root of individual small XML
documents. Take DBLP dataset as an example. The size of
the entire DBLP data set is 487 M in a single document.
The root of the original DBLP document is ‘dblp’. The root
node with tag ‘dblp’ has 296 282 children nodes. Among
the 296 862 documents, 212 271 are rooted with node
‘inproceedings’; 79 615 are rooted with node ‘article’; 3007
are rooted with node ‘proceedings’; 1009 are rooted with
node ‘incollection’; 845 are rooted with node ‘book’; 72 are
rooted with node phdthesis; 37 are rooted with node ‘www’
and four are rooted with node ‘masterthesis’. Through
parsing dblp data set and split it into small pieces by taking
multi-valued nodes as the root of individual small XML
documents, we obtain 29 6282 small documents, which
IET Softw., 2012, Vol. 6, Iss. 4, pp. 342–349
doi: 10.1049/iet-sen.2011.0082
range from 1 k to 10 M. However, the effectiveness for this
operation lies on the structural characteristic of the original
XML documents, but it indicates to be a beneficial
approach for resolving the defects for dealing with single
large document.

4.2 Index construction

In this part we will propose our TLI index design for indexing
XML documents. The aim of the index construction should
not only contain the structural information of the XML
documents but also support efficiently obtaining top-k query
results according to associated query algorithm. Motivated
by this thought, we extend the classical per-term inverted
index to a TLI index construction for XML keyword
search, as shown in Fig. 3.

The left part in Fig. 3 is the first level of index construction,
which is the same as the classical per-term inverted index with
keywords as index entry. Each item in the inverted list is a
table containing three elements (docID, max score, offset),
in which docID is the identifier of XML documents in data
set, and max score is the highest score in the corresponding
Document block which we will illustrate later, and offset is
an integer to tag the starting position of its corresponding
Document block as shown in the right part in Fig. 3. The
inverted list is organised in descending order with regard to
maxscore. In the following we will first illustrate the
construction and content of the Document Block. Then we
will show how to generate maxscore for corresponding
docID.

The Document block is the second level of index
construction. Generally each Document block is
corresponding to document docID and it is also an inverted
list in ascending order with regard to Dewey ID. Each item
in the inverted list of Document block contains two
elements and each item is associated with a linked list that
records the scores of all its ancestors. Let us take the XML
document in Fig. 4 as an example to illustrate how to
generate Document block with keyword ‘forward’ as index
entry.

To begin with, we parse this document and compute scores
for each tag-term pair. Suppose now the keyword that we are
dealing with is ‘forward’. We compute a series of scores
for all elements that directly or indirectly contains keyword
Fig. 2 Statistics of DBLP data set

Fig. 3 TLI index construction
345

& The Institution of Engineering and Technology 2012

www.ietdl.org
‘forward’. We compute S(‘position’, ‘forward’), S(‘player’,
‘forward’), S(‘players’, ‘forward’), S(‘team’, ‘forward’). We
can also use Dewey ID to represent the associated tag
name. However, one tag name may correspond to several
Dewey IDs if tag name occurs more than once. The scores
for keyword ‘forward’ are shown in (Table 1).

In Fig. 4, keyword ‘forward’ appears twice, hence there are
two items in the Document Block for keyword ‘forward’. Each
item is a table (Dewey ID, text), here text is the text content of
the corresponding node of Dewey ID. We order the two items
in ascending order by their Dewey ID for Document block.
Each item maintains a linked list to record the scores for all
its ancestors. The scores in the linked lists are computed
from S(tag, keyword) and the sequence of the linked list
is in descendant-ancestor order. The following Fig. 5 is the
construction of Document block for keyword ‘forward’,
denoted as Document block[‘forward’][‘rocket.xml’].

To calculate the maxscore of the Document block, we
just need to obtain the maximal score of all scores in the
linked lists. In Fig. 5, maxscore of keyword ‘forward’ for
the Document block is 0.5. This maxscore is also added
into the inverted list for corresponding document docID in
Fig. 3.

Fig. 4 Example of an XML document to index

Table 1 Scores of tag-term pairs for keyword ‘forward’

S (tag, term) S (Dewey ID, term) Score

S(‘position’, ‘ forward ’) S (0.1.0.1, ‘forward ’) 0.5

S (0.1.1.1, ‘forward ’) 0.5

S(‘player’, ‘ forward ’) S (0.1.0, ‘forward ’) 0.4

S (0.1.1, ‘forward ’) 0.4

S(‘players’, ‘ forward ’) S (0.1, ‘forward ’) 0.3

S(‘team’, ‘ forward ’) S (0, ‘forward ’) 0.3
346

& The Institution of Engineering and Technology 2012
5 Algorithm

After demonstrating the index construction for XML data, we
present the corresponding XTop algorithm that copes with
top-k generating process through keyword search (Fig. 6).
The input of the algorithm is a bag of keywords and the
output is sub-tree results associated with the query
keywords. The algorithm process is constituted of four steps:

1. Access to keyword inverted lists.
2. Index scheduling.
3. Sub-tree generation.
4. Top-k answers selection.

In the following we will demonstrate algorithm processing
of our algorithm based on data flow.

1. Access to keyword inverted lists: Our query processing
method is based on pre-computed TLI index and the first
level is sorted in descending order with regard to maxscore
in each item. On the run time our algorithm sees an item t
in one inverted list at each scan step, and then the algorithm
performs random access to pick items in other inverted lists
with the same docID as t.docID. For each inverted list we
assign a thread to implement sequential access and random
access, and each thread is in charge of recording the current
scan position and ready to fetch the next item.
2. Index scheduling: Besides the two thread proposed in step
1, there is also another thread that is in charge of scheduling
decision in interleaved manner. At the end of each scan step,
this part delivers all the corresponding items of the same
docID together with their associated Document block to the
sub-tree generator module. What is more, at each scan step,
the algorithm also makes a prediction for the potential best
score that the unscanned items may reach. The predication
for bestscore is calculated as follows

bestscore =
∑

i=1...m

highi

3. Here m is the number of inverted lists and highi is the
maxscore of each item located at the upper bound in the
unvisited parts of the index lists. We will use bestscore
together with worstscore generated from step 3 to
implement candidate pruning and early termination.
4. Sub-tree generation: The sub-tree generator module is to
generate the corresponding SLCA nodes from Dewey ID
lists and also calculates the corresponding score for the
SLCA result nodes by summarising all the individual score
of each keyword. The sub-tree generator is implemented in
IL (Index Lookup Eager Algorithm) algorithm raised in [7].
The IL algorithm calculates the SLCA results of several
Fig. 5 Example of document block for keyword ‘forward’
IET Softw., 2012, Vol. 6, Iss. 4, pp. 342–349
doi: 10.1049/iet-sen.2011.0082

www.ietdl.org
Fig. 6 XTop algorithm structure

Fig. 7 Document blocks for keyword ‘Battier’ and ‘forward’
nodes with their Dewey IDs. The input of the IL algorithm is
several lists of Dewey IDs that are in ascending order each,
just as we have organised for each Document Block. Thus
we could directly take the Document blocks as input of the
algorithm. At the same time, to obtain the score for each
SLCA result, we aggregate its partial score for each
keyword by tracing the linked list for all ancestor tags
corresponded to each item in Document blocks. As an
example, suppose two query keywords are ‘Battier’ and
‘forward’ in Fig. 4, and their corresponding Document
Blocks are shown as follows in Fig. 7.
5. Through IL algorithm, we would know that 0.1.0 is their
SLCA node generated from 0.1.0.0.0 of ‘Battier’ and
0.1.0.1.0 of ‘forward’. So to calculate the score for the
SLCA node 0.1.0, we trace along both linked list of
‘0.1.0.0.0’ and linked list of ‘0.1.0.1.0’ to find node 0.1.0
and its corresponding score. Thus we find the final score for
node 0.1.0 is 0.7, summarised from 0.3 for keyword
‘Battier’ and score 0.4 for keyword ‘forward’.
6. Top-k answers selection: The top-k answer selection is to
preserve the k highest scores evaluated at current scan step.
In our realisation, we employ a min-heap for dynamic value
change to generate current top-k results from last scan
step’s top-k results combined with the newly calculated
results from sub-tree generator. We take the minimal score
in the top-k answers at current scan step as worstscore.
Now we obtain the worstscore of the current top-k results
and the bestscore for predication of best score among
IET Softw., 2012, Vol. 6, Iss. 4, pp. 342–349
doi: 10.1049/iet-sen.2011.0082
unvisited items from step 1. Thus each time at the end of
step 3 we would apply candidate pruning and test for
possible early termination. If worstscore is no less than
bestscore, the algorithm can safely terminate and output the
top-k results in top-k answer selector. Or else the algorithm
goes back to step 1 to continue the next scan step.

The corresponding algorithm pseudo code is shown in Fig. 8.

Fig. 8 Xtop algorithm
347

& The Institution of Engineering and Technology 2012

www.ietdl.org
Fig. 9 Comparison with keywords of low frequency on DBLP

Fig. 10 Comparison with keywords of medium frequency on
DBLP

Fig. 11 Comparison with keywords of high frequency on DBLP

Fig. 12 Comparison with keywords of low frequency on Wikipedia

Fig. 13 Comparison with keywords of medium frequency on
Wikipedia
348

& The Institution of Engineering and Technology 2012
6 Experiments

In this part we evaluate our algorithm presented in this paper
through different groups of experiments. We use java for our
implementation on a 2.00 GHz server with 8.00 GB of RAM.
The data set we make use of for our experiments are DBLP
and Wikipedia (English version). The size of DBLP data
set is 487 M in size and Wikipedia is 1 G. Through pre-
processing on single large document proposed in Section
4.1, we have split the original large single documents into
small pieces of document fragments. What is more, through
statistical analysis on data sets, we have devided keywords
into three groups, which are of small frequency (ranging
from 1 to 500), of medium frequency (ranging from 500 to
5000) and of high frequency (ranging more than 5000). We
have evaluated and compared naive approach to obtain
top-k results (naive approach means just going through all
the inverted lists to obtain global scores of all items for
obtaining the top-k results), XRank and our XTop algorithm
with SLCA as query semantic (other query semantics could
be easily incorporated into our system as we have
demonstrated in Section 5) by a variety of keywords with
different frequencies. We have chosen several queries of
different frequencies for experimental evaluation.

Figs. 9–14 show the response–time comparison of naive
approach, XRank and XTop algorithm for different groups
of keyword frequencies on DBLP and Wikipedia data set,
respectively. Each query contains keywords of the same
frequency group and the response time for Figs. 9–11 is
the average of response time after several executions.
Figs. 9–11 are corresponding to low, medium and high
frequency keyword queries, respectively. The same happens
in Figs. 12–14. From these three diagrams we could see
that XTop algorithm and XRank perform better in
generating top-k results, and as the keyword frequency
becomes higher, this trend exhibits more obvious. This
conclusion is intuitive and accord with our original
estimation since naive approach just goes through all
inverted lists and then picks the top-k evaluated results,

Fig. 14 Comparison with keywords of high frequency on
Wikipedia

Fig. 15 Comparison with keywords of mixed frequencies on DBLP
IET Softw., 2012, Vol. 6, Iss. 4, pp. 342–349
doi: 10.1049/iet-sen.2011.0082

www.ietdl.org
whereas XTop and XRank benefits from early termination on
processing instead of scanning through all indexes.

In Figs. 15 and 16, each query contains several keywords
from different frequency groups. From Figs. 15 and 16 we
could see that with this combination of keywords, XTop
algorithm and XRank also perform better than naive
approach. The experimental results on different groups
show the good scalability of our XTop algorithm.

In the meanwhile, Figs. 9–16 all indicate that XTop
algorithm performs better compared to XRank, but not as
obvious as compared to naive approach. We consider this
happens due to that since XRank makes use of top-k
strategy so as to make candidate pruning, thus it also
benefits from early termination without scanning through all
indexes and performs better on query processing than naive
approach. But our algorithm benefit from the advantage of
obtaining all results of one document at a time, dealing
with a batch of elements at linear complexity cost, whereas
XRank just copes with one element at a time, applying too
much random access to index lists. Thus our algorithm
gains superiority at querying response time.

7 Conclusion and future work

We have presented the design, implementation and evaluation
of our algorithm for adaptive top-k method applied in
keyword search. Our experimental evaluation shows that
our index for XML data and associated algorithm offer
significant performance benefits and outperform former
approaches.

There are several interesting issues for future work. First,
our algorithm considers the XML data is hierarchical, taken
as tree-based model. For structured (or semi-structured)
data, the XML documents may be normalised, in which
case the data model may be a graph with the consideration
of IDREFs and XLinks [5]. Second, we assume that our
algorithm can both apply sequential and random access to
index lists; however, there may be some situation that
restricts random access or totally forbidden. Thus more
flexible top-k strategy is about to study in the future. Third,

Fig. 16 Comparison with keywords of mixed frequencies on
Wikipedia
IET Softw., 2012, Vol. 6, Iss. 4, pp. 342–349
doi: 10.1049/iet-sen.2011.0082
we will extend our algorithm to combine various score
functions. Final, we will also further discuss the possibility
that relaxing search terms and, in particular, tag names, by
using ontology or thesaurus-based similarities.

8 Acknowledgments

This work was partially supported by Project 61170091
supported by National Natural Science Foundation of China
and Project 2009AA01Z136 supported by the National
High Technology Research and Development Program of
China (863 Program). We are also grateful to the
anonymous reviewers for their comments.

9 References

1 Chinenyanga, T., Kushmerick, N.: ‘Expressive retrieval from XML
documents’. Proc. Int. Conf. Research and Development in
Information Retrieval (SIGIR 2001), Louisiana, USA, September
2001, pp. 163–171

2 Amer-Yahia, S., Lakshmanan, L., Pandit, S.: ‘FleXPath: Flexible
structure and full-text querying for XML’. Proc. Int. Conf.
Management of Data (SIGMOD 2004), Paris, France, June 2004,
pp. 83–94

3 Theobald, M., Schenkel, R., Weikum, G.: ‘An efficient and versatile
query engine for TopX search’. Proc. Int. Conf. Very Large Data
Bases (VLDB 2005), Trondheim, Norway, August–September 2005,
pp. 625–636

4 Theobald, M., Bast, H., Majumdar, D., Schenkel, R., Weikum, G.:
‘TopX: efficient and versatile Top-k query processing for semi-
structured data’, VLDB J., 2008, 17, (1), pp. 81–115

5 Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: ‘XRANK: ranked
keyword search over XML documents’. Proc. Int. Conf. Management of
Data (SIGMOD 2003), CA, USA, June 2003, pp. 16–27

6 Li, Y., Yu, C., Jagadish, H.: ‘Schema-free XQuery’. Proc. Int. Conf.
Very Large Data Bases (VLDB 2004), Toronto, Canada, August–
September 2004, pp. 72–83

7 Xu, Y., Papakonstantinou, Y.: ‘Efficient keyword search for smallest
LCAs in XML database’. Proc. Int. Conf. Management of Data, MD,
USA, June 2005, pp. 537–538

8 Hristidis, V., Koudas, N., Papakonstantinou, Y., Srivastava, D.:
‘Keyword proximity search in xml trees’, IEEE Trans. Knowl. Data
Eng., 2006, 18, (4), pp. 525–539

9 Liu, Z., Chen, Y.: ‘Identifying meaningful return information for xml
keyword search’. Proc. Int. Conf. Management of Data (SIGMOD
2007), Beijing, China, June 2007, pp. 329–340

10 Li, G., Feng, J., Wang, J., Zhou, L.: ‘Efficient keyword search for
valuable LCAs over XML documents’. Proc. Int. Conf. Information
and Knowledge Management (CIKM 2007), Lisbon, Portugal,
November 2007, pp. 31–40

11 Yu, H., Deng, Z., Xiang, Y., Gao, N., Zhang, M., Tang, S.: ‘Adaptive
top-k algorithm in SLCA-based XML keyword search’. Proc. Int.
Conf. Asia-Pacific Web (APWeb 2010), Busan, Korea, April 2010,
pp. 364–366

12 Schieber, B., Vishkin, U.: ‘On finding lowest common ancestors:
simplification and parallelization’, SIAM J. Computing, 1988, 17, (6),
pp. 1253–1262

13 Bao, Z., Ling, T., Chen, B., Lu, J.: ‘Effective XML keyword search with
relevance oriented ranking’. Proc. Int. Conf. Data Engineering (ICDE
2009), Shanghai, China, March–April 2009, pp. 517–528
349

& The Institution of Engineering and Technology 2012

