
 978-1-4244-5934-6/10/$26.00 ©2010 IEEE 2412

2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2010)

A New Indexing Strategy for XML Keyword Search

Yongqing Xiang, Zhihong Deng, Hang Yu, Sijing Wang, Ning Gao
Key Laboratory of Machine Perception (Ministry of Education), School of Electronics Engineering and Computer Science, Peking University,

Beijing 100871, China
xiangyq@cis.pku.edu.cn

Abstract

With the rapid increase of XML documents on the web, how
to index, store and retrieve these documents has become a very
popular and valuable problem. At present, there are two normal
ways of retrieving XML documents. One is structure-based
retrieval; the other is keyword-based retrieval. However, XML
keyword search is becoming more and more popular because it is
easy to master and manipulate. In XML keyword search system,
a key problem is how to store the structure information into
XML indices efficiently. At present, Dewey numbers are often
used to label XML nodes in XML indices. However, Dewey
numbers may lead to redundancy in XML indices. In this paper,
we propose a new labeling method called LAF numbers for XML
indices and we device a new indexing structure called Two-Layer
index for XML keyword retrieval systems. At last, we have
conducted an extensive experimental study and the experimental
results show that our indexing method achieves better space
efficiency than prevailing Dewey-number-based indexing method

Keywords-LAF numbers; Two-Layer; Indexing; XML keyword
Search; Dewey numbers

I. INTRODUCTION

XML is a new kind of markup language emerging from
1998. Because XML provides a basic syntax that can be used
to share information between different kinds of computers,
different applications, and different organizations without
having to pass through many layers of conversion, XML has
become the standard of data representation, exchanging and
sharing on the web. How to store and retrieve XML documents
has become a widely discussed issue in the field of data
management [1]. XML keyword search is a proven user-
friendly way of querying XML documents. It allows users to
find the information they are interested in without having to
learn a complex query language or needing prior knowledge of
the structure of the underlying data [2, 3, 4, 5, 6, 7, 8].

Traditional query processing approaches on relational and
XML databases are constrained by the query constructs
imposed by the language such as XQL and XQuery. These
constraints bring about several critical issues. Firstly, the query
language themselves are hard to comprehend and master for
common users who are not professional database users. For
example, the XQuery language is fairly complicated for
common users to grasp. Secondly, these query languages
require the queries to be formed based on the complex
underlying XML data schemes. These traditional querying
methods are powerful but unfriendly. Keyword based XML

search is a proven user-friendly way of querying XML
documents. It allows users to find the information they are
interested in without having to learn a complex query language
or needing prior knowledge of the structure of the underlying
data. The only thing for the internet users to do is to input some
keywords to the search engine. Due to the intrinsic property
that XML data (or XML documents) contain content and
structure at the same time [2, 3, 4, 5, 6, 7], XML keyword
search brings many new challenges. One of the challenges is
how to store the hierarchical structure information into XML
indices efficiently. To address this problem, we first put
forward a new encoding method called LAF number to store
the hierarchical structure information with high space
efficiency. And then we build a new index structure called
Two-Layer LAF inverted index based on LAF number, which
considers the XML documents as plain text documents and
semi-structured documents respectively.

To summarize, we make the following technical
contributions in this paper:

We put forward a new encoding method called LAF
numbers for XML documents. LAF number has two
obvious advantages to compare with Dewey encoding,
firstly, the length of LAF number for every XML node is
constantly 3. Secondly, if we want to compare the size of
two LAF numbers, we only compare the size of their level
order sequence number, the complexity of which is O(1).

We build a new index structure called Two-Layer LAF
inverted index. We save the attributes of describing XML
documents as plain text documents such as the length and
size of XML documents, the URL of XML documents
and so on into the first layer index and then we save the
hierarchical structure information and attributes of XML
elements into the second layer index. Our experiments
show that this new index structure can decrease the
redundancy of the XML indices and improve the space
performance of XML retrieval systems.

The remainder of the paper is organized as follows. Section
2 introduces background of this paper, our motivation and
related work. Section 3 introduces LAF number, a new kind of
encoding scheme. Section 4 presents a new indexing structure
called Two-Layer LAF inverted index, which is based on LAF
number. Experimental results are presented in Section 5.
Section 6 summarizes our study and points out some future
research issues.

 2413

Figure1. XML document for proceedings

II. BACKGROUND AND MOTIVATION

A very important difference between XML documents and
traditional plain text documents is that XML documents are
semi-structured and can describe information more precisely.
So how to save the hierarchical structure information in XML
documents into indices and make the best use of this structure
information to improve the quality of XML keyword search
are meaningful and challenging problems. One effective way
to save structure information is to label XML elements with
numbers. Dewey number is a very popular XML encoding
method at present. However, Dewey number has two obvious
disadvantages: firstly, the length of Dewey number for an
XML element increases with the depth of this element in the
XML tree, which may cause indexing redundancy[2, 3, 12, 13,
15], for example, in Figure 2, the depth of the root is 1, and the
length of its Dewey number is 1, but the node “0.0.1.1.1.0”
whose depth is 6, the length of its Dewey number is 6;
secondly, many query algorithms based on Dewey numbers
need to sort elements according to the big and small of Dewey
number[2, 3, 4, 5, 6, 7, 12], the complexity for comparing two
Dewey numbers is O(n)(here n is the average length of the two
Dewey numbers), which will be unacceptable in processing of
large scale XML documents set, for instance, if we want to
compare the big and small of node “0.0.1.1.0.0” and
“0.0.1.1.1.0”, the min number of comparing times is 6. In
order to address these two problems, we introduce a new
encoding scheme called LAF number in section 3. Our
experiments show that our method has good space
performance.

As is known to all, inverted files are the most popular index
structure for plain text search. Besides, signature files are also
very prevalent. In XML keyword search, Dewey number based
inverted files (simple for Dewey Inverted files) are the most
popular index structures. [2, 3, 4, 5, 6, 7, 8, 12] are all based on

Proceedings
0

Paper
0.0

Paper
0.1

Title
0.0.0

Institution
0.0.1

Introduction
0.0.2

Title
0.1.0

Authors
0.1.1

Introduction
0.1.2

This paper by
Xu and Yannis

0.0.2.0

Authors
0.0.1.1

University of
California

0.0.1.0

The core
contribution of..

0.1.2.0

Name
0.1.1.0

Name
0.1.1.1

Efficient
Keyword Search..

0.1.0.0

Efficient LCA
based
0.0.0.0

Name
0.0.1.1.0

Name
0.0.1.1.1

Yu Xu
0.0.1.1.0.0

Yannis
Papakonstantinou

0.0.1.1.1.0

Yannis
Papakonstantinou

0.1.1.1.0

Yu Xu
0.1.1.0.0

Figure2. An XML tree Labeled with Dewey numbers
Dewey inverted files. However, we know XML document is a
special kind of text documents and XML keyword search
mostly focused on XML elements but not full documents.
Therefore, for each XML document, there are two kinds of
attributes for it: the attributes about the XML documents as
plain text documents, such as the length of the document and
the URL of the document; and the attributes about XML
elements and inner structure, such as Dewy numbers and the
length of element. If we store these two kinds of attributes in
just one layer inverted files, there must be much redundancy
and this kind of inverted files are also adverse to the query
processing algorithms. To address this problem, We devised a
new index structure called Two-Layer LAF inverted index, we
save the attributes to describe XML documents as plain text
documents such as the length and size of XML documents, the
URL of XML documents and so on into the first layer index
and we save the hierarchical structure information into the
second layer index. Our experiments show that this new index
structure can decrease the redundancy in the XML indices.

III. LAF NUMBER

This section will introduce a new labeling strategy call LAF
number for XML documents. At present, the most popular
labeling method is Dewey number. In this section, we firstly
introduce the Dewey number. Then we introduce our new
encoding strategy called LAF number.

A. Dewey Encoding
Dewey number is a kind of very popular labeling method

for XML documents. [1] has introduced Dewey order numbers
to store and query XML documents for the first time. With
Dewey order, each node is assigned a vector that represents the
path from the document’s root to the node. Each component of
the path represents the local order (With local order, each node
is assigned a number that represents its relative position among
its siblings) among the sons of its parent node, Figure 2 is an
XML document tree labeled with Dewey number for the XML
document showed in Figure 1. It is easy to find that Dewey
number has an important feature: It is easy to get the common
ancestor node and judge the relationship of arbitrary two nodes
in XML trees. In fact, the common ancestor node’s Dewey
number is the longest common prefix of these nodes’ Dewey
numbers. To give an example, Node 0.0.1.1.0.0 and Node

 2414

0.0.1.1.1.0 and Node 0.0.1.0 are three nodes in Figure 2, the
longest common prefix of them is 0.0.1, so Node 0.0.1 is their
common ancestor.

Nevertheless, Dewey number has two obvious disadvantages,
because every sub-node should keep its parent node’s Dewey
number as its prefix, which may cause redundancy and increase
the space complexity of XML indices; Moreover, the query
processing algorithm based on Dewey encoding may cause low
efficiency.

B. LAF numbers
In order to overcome the disadvantages of Dewey numbers,

we put forward a new labeling method for XML documents
called LAF number, which is short for Level order and Father
number. LAF number is built on level-order tree traversal.
Level-order traversal is a kind of global traversal strategy.
When traversing an XML tree by level-order, we first visit the
root of the tree, then, we traverse the tree level by level until all
of the nodes in the tree are visited. We can label the XML tree
by its sequence number of level-order traversal as Figure 3. So
every node in XML tree has an only sequence number as its
level order number. The level order sequence of XML tree in
figure 3 is A, B, C, D, E, F, G, H, I, J, so the level order
encoding of these ten nodes is 0, 1, 2, 3,4,5,6,7,8,9.

Figure3: Level order Encoding on XML tree.
LAF number is a new labeling scheme for XML tree. Every

node in the XML tree has an unique LAF number. Every LAF
number is made up of three components, which are the level
order sequence number of current node, the level order
sequence number of current node’s father node and the level
number(or depth) of current node. Especially, if current node is
the root node, its father node’s level order sequence number is
set as -1 because the root node has no father node. The level
number begins from 0, and it increases level by level. The
structure of LAF encoding is illustrated as Figure 4.

Like Dewey numbers, LAF numbers can also be stored in a
vector with only three dimensions. In Figure 3, It is easy to
know that Node A’s LAF number is 0.-1.0, because node A’s
level order sequence number is 0, so the first dimension of LAF
vector is 0; and node A is the root of XML tree, so its father
node’s level order sequence number is set as -1; and node A is
at the first level of XML tree, so its level number is 0. By parity
of reasoning, we can label the tree in Figure 2 as Figure 5 using
LAF numbers.

Level order
sequence
number

Father node’s
level order

sequence number

Level
number

Figure4: the structure of LAF encoding
We can know that the LAF numbers for nodes in XML tree

are different because their level order sequence numbers are

Figure5: LAF encoding example
different. On the other hand, given the LAF numbers of nodes
in an XML tree, it is easy to build an only XML tree. That is to
say, LAF number is stable and reversible.

IV. TWO LAYER INDEX

Inverted index (also referred to as postings file or inverted
file), is a kind of indexing structure storing a mapping from
content, such as words or numbers, to its locations in a
database file, or in a document or a set of documents. Now it is
the most popular data structure used in document retrieval
systems. This section will introduce Dewey encoding based
inverted index firstly, then we propose a new index structure
based on LAF encoding.

A. Dewey Inverted Index
Dewey inverted index, also referred to as Dewey inverted list,
is now the most popular index structure used in XML
document retrieval systems, such as XRANK [2] and
XKSearch [3]. The inverted list for a keyword K contains the
Dewey numbers of all the XML elements that directly contain
keyword K. To handle multiple documents, the first dimension
of each Dewey number can be set as the document ID..

Dewey number based inverted index is a kind of effective
index for XML documents, however, because every node
restore its father’s Dewey number as its prefix, which can
cause redundancy and increase the space complexity of XML
indices. Can we design a new index structure, which has better
time and space performance, for XML document? The answer
is yes, following we will introduce the new index structure.

B. Two-Layer LAF Inverted Index
As is know to everyone, the biggest difference between

retrieval on plain text and XML document is that XML

 2415

documents contain structure information except content and the
granularity of XML retrieval is XML element but not an entire
document. In fact, every XML document can be seen as a plain
document, and can be also seen as a semi-structure document.
That is to say, XML documents have two kinds of attributes,
the attributes about it as a plain document and the attributes
about the inner elements and structure. Can we divide these
two different kinds of attributes in XML indices to speed up the
efficiency of XML retrieval? Yes, we can build a two-layer
inverted index to support these two kinds of attributes at the
same time.

Two-layer inverted index includes two parts. The first part
is the first layer index, which is similar to common inverted
index. The second part is the LAF number table (simple for
LAF table). The LAF table can be seen as the second Layer
index.

LAF table is a table to store all the LAF numbers in an
XML tree. If an XML tree has n nodes, its relevant LAF
number table has n entries. LAF numbers in LAF table are
sorted according to their level order sequence number. LAF
table is very important here, because it stores the structure
information of the XML tree. Table 1 is an example of LAF
table for the XML tree in Figure 3.

The first layer index is an inverted index built on XML
document. The first layer index is similar to common inverted
index except that the first layer index should contain a list of
level order sequence numbers of nodes containing current
keyword occurs in current document. The sequence number list
is related to the LAF table of current XML document, the level

Table1: LAF encoding table

Level order
number

Father node’s level
order number

Level number

0 -1 0

1 0 1

2 0 1

3 0 1

4 1 2

5 1 2

6 2 2

7 3 2

8 3 2

9 3 2

order sequence number in the list is one-to-one related to that
in the LAF table. Figure 7 shows the structure of the first layer
index.

document
number

Term frequency in
document

Level order sequence
number list

Figure6: Structure of First Layer Index

Figure 8 is an example of two-layer LAF inverted index to
store keywords “Yu” and “Yannis” in Figure 1, whose
document number is set as 1000. The level order sequence
number of nodes containing these two keywords can be
respectively gotten from the XML tree labeled with LAF
numbers in Figure 5.

Figure7: Two-Layer LAF inverted Index

V. EXPERIMENTAL STUDY

We now experimentally evaluate the techniques presented in
this paper. Firstly, we introduce the experimental environment
and the XML data set used in this paper. Secondly, we compare
Two-Layer LAF inverted index and traditional Dewey
encoding based inverted index in view of space efficiency.

A. Experimental Setup
We run our experiments on XML data set from Wikipedia,

which is the standard data set used by INEX2009 (The
Initiative for the Evaluation of XML Retrieval), which is an
international campaign involving more than fifty organizations
worldwide. We do our experiments on four different data sets,

Table2: Details of the Data Sets

Number of
documents

Data set
size

Total
elements

Total
keywords

400 7524KB 210180 399386

800 15107KB 411243 537881

1200 22485KB 618147 797175

1600 28889KB 796850 1016924

2000 36112KB 994408 1283765

which include 400, 800, 1200, 1600 and 2000 XML documents
respectively and are about 9505KB, 18775KB, 27775KB and
37001KB respectively. Table 2 shows details of the data sets
we used. We choose XML data from Wikipedia because these
data sets are made up by many small pieces of XML
documents. Average size of each document is about 19KB.

We build both traditional Dewey number based index and
Two-Layer LAF inverted index, which are both stored in
Berkeley DB . We used C++ for our implementation, and
used a 1.8GHz Pentium Dual processor with 2GB of main
memory and 160GB of disk space.

 2416

B. Space Performance
From Table 3 we can see that the total size of Two-Layer

LAF inverted index for each data set is a little lager than the
original data set. Figure 9 shows the space requirements for
Two-Layer LAF index and Dewey inverted index. We can see
that the space complexity of Dewey inverted index is about
triple the complexity of Two-Layer LAF index. There are two
reasons about this difference. The first reason is that the length
of Dewey number increases as the increase of the depth of
element while the length of LAF number for each element is
constantly 3. In Figure 2 element ‘0.0’ whose depth is 2 needs
two integers to record its Dewey number, but the element
‘0.0.1.1.0.0’ whose depth is 6 needs six integers to record its
Dewey number. The second reason is that Dewey inverted
index is only one layer index which is built on elements but
not on documents, so many document features (such as
document id, document length and document URL and so on)
are stored repeatedly many times, however, these features are
only stored once in Two-Layer LAF inverted index.

Table 3: Compare the space performance

Figure 8: Space Performance Comparison

VI. CONCLUSIONS

In this paper, we have investigated the problems of
keyword search based on Dewey encoding over XML
documents. We found that Dewey number based keyword
search system has two disadvantages: (1) It is low efficiency
to store Dewey numbers because the length of Dewey number
for an element in XML document is proportional to its depth
in the XML tree; (2) It is low efficiency to compare two

Dewey numbers, if we want to get the lager Dewey number,
we need to compare each dimension of their Dewey number
vectors. In order to solve these problems, we proposed a new
encoding schema called LAF for XML elements. Then, we
designed a new index structure called Two-Layer LAF
inverted index. We have implemented the proposed method
and the expensive experiment results showed that our new
method has better space performance.

In the future, we will build an XML keyword retrieval
system base on the method proposed in this paper.

ACKNOWLEDGMENT.
This work is partially supported by Supported by the

National High Technology Research and Development
Program of China (863 Program) under Grant No.
2009AA01Z136 and the National Natural Science Foundation
of China under Grant No.90812001.

REFERENCES

[1] Tatarinov I, Viglas S, Beyer K, et al. Storing and querying ordered XML
using a relational database system. In Proceedings of SIGMOD’02.
Madison, Wisconsin: ACM, 2002

[2] Guo L, Shao F, Botev C, et al. BrickNet: XRANK: Ranked keyword
search over XML documents [C]. In Proceedings of ACM SIGMOD’03.
San Diego, CA: ACM, 2003: 16-27

[3] Yu Xu, Papakonstantinou Y. Efficient keyword search for smallest
LCAs in XML databases .In Proceedings of SIGMOD’05. Baltimore,
Maryland: ACM, 2005

[4] Yu Xu, Papakonstantinou Y. Efficient LCA Based Keyword Search in
XML Data. In Proceedings of CIKM’07. Lisboa: ACM, 2007

[5] Yu Xu, Yannis Papakonstantinou. Efficient LCA based Keyword Search
in XML Data.Nantes, France. EDBT’08, March 25–30, 2008

[6] Feng Shao, Lin Guo, Chavdar Botev, et al. Efficient Keyword Search
over Virtual XML Views. In Proceedings of VLDB’07

[7] Li Guoliang, Feng Jianhua, Wang Jianyong. Effective Keyword Search
for Valuable LCAs over XML Documents. In Proceedings of CIKM’07.
Lisboa: ACM, 2007

[8] Chong sun, Chee-Yong Chan, Amit K. Goenka. Multiway SLCA-based
Keyword Search in XML Data. In Proceedings of WWW’07

[9] Yunyao Li, Cong Yu, H. V. Jagadish. Schema-Free XQuery.
Proceedings of the 30th VLDB Conference, Toronto, Canada, 2004

[10] Ziyang Liu, Jeffrey Walker, Yi Chen. XSeek: A Semantic XML Search
Engine Using Keywords. In Proceedings of VLDB’07

[11] S. Soltan, A. Zarnani, R. AliMohammadzadeh, and M. Rahgozar.
IFDewey: A New Insert-Friendly Labeling Schema for XML Data.
PROCEEDINGS OF WORLD ACADEMY OF SCIENCE,
ENGINEERING AND TECHNOLOGY VOLUME 13 MAY 2006
ISSN 1307-6884

[12] Kong Lingbo, Tang Shiwei, Yang Dongqing. Layered Solution for
SLCA Problem in XML Information Retrieval. Journal of Software,
2007, 18(4): 919-932

[13] William M. Shui, Franky Lam, Damien K. Fisher, Raymond K.Wong.
Querying and Maintaining Ordered XML Data using Relational
Databases. Conferences in Research and Practice in Information
Technology, Vol. 39. 2005

[14] TORSTEN GRUST, MAURICE VAN KEULEN and JENS TEUBNER.
Accelerating XPath Evaluation in Any RDBMS. ACM Transactions on
Database Systems, Vol. V, No. N, Month 20YY, Pages 1-40

[15] Patrick O’Neil, Elizabeth O’Neil, Shankar Pa, Istvan Cseri, Gideon
Schaller. ORDPATHs: Insert-Friendly XML Node Labels. SIGMOD
2004, June 13–18, 2004, Paris, France.

