
Adaptive Top-k Algorithm in SLCA-Based XML
Keyword Search

Hang YuP
P, Zhihong Deng (Corresponding author)P

P, Yongqing XiangP
P, Ning GaoP

P, Ming ZhangP, Shiwei Tang

P Key Laboratory of Machine Perception (Ministry of Education), School of Electronics Engineering and Computer Science,
Peking University, Beijing 100871, China

Ppkucthh@gmail.com, zhdeng@cis.pku.edu.cn, xiangyq@cis.pku.edu.cn, nanacream@gmail.com,
mzhang@net.pku.edu.cn, tsw@pku.edu.cn

T AbstractT— Computing top-k results matching XML queries is
gaining importance due to the increasing of large XML
repositories. In this paper, we propose a novel two-layer-based
index construction and associated algorithms for efficiently
computing top-k results for SLCA-based XML keyword search.
We have conducted expensive experiments and the results show
great advantage on efficiency compared with existing approaches.

I. INTRODUCTION
In recent years, the ability to compute top-k answers to

XML queries is gaining considerable attention due to the rapid
growth of XML repositories. Top-k query evaluation on exact
answers is appropriate when the answers are large and users
are only interested in the highest-quality matches. Some
works have taken efforts to resolve top-k applied in XML
keyword search, such as Top-X system [1], [2] and XRank
system [3]. However, top-X could not construct sub-tree
automatically without structural information, but merely
returns individual keyword nodes that contains the
corresponding keywords instead of sub-tree results. So, it is
very difficult for top-X to find top-k results that are defined by
SLCA. In addition, because XRank organizes the inverted lists
at the granularity of elements, it has to apply more random
access to the inverted lists to get the corresponding nearest
nodes to generate the sub-tree results [3].

In this paper, we propose a novel two-layer-based index
construction and associated algorithms for efficiently
computing top-k results for SLCA-based XML keyword
search. The remainder of the paper is organized as follows.
Section II mainly talks about some preliminaries such as
query semantic and corresponding score function for XML
sub-tree-based results. In Section III, we illustrate the
approach for index construction (TLI), and associated
algorithm (STA) will be proposed In Section IV. Our
experimental results are showed in Section V. Section VI
draws the conclusion and discuss future work.

II. PRELIMINARIES
In this part, we mainly talk about two issues as

preliminaries for our work. They are query semantic and score
function.

In recent years, many query semantics have been proposed,
such as XRank [3], Smallest LCA (SLCA) [4], Meaningful
LCA (MLCA) [5], Grouped Distance Minimum Connecting
Tree (GDMCT) [6], XSeek [7] and so on. In the paper, we
employ SLCA, which is widely accepted, as query semantic.

The result of SLCA model must satisfy two restrictions: (i)
The results of SLCA should contain all keywords either in
their labels or in the labels of their descendant nodes and (ii)
they have no descendant node that also contains all keywords.

The critical issue of score function applied in XML
documents is how to take the inner structure of XML tree into
consideration. The score function should reflect both content
information and structural information to get an overall score
for each term and its corresponding ancestor tags. In our
realization, we borrow the score function which is applied in
Top-X system [1], [2]. Here we will not bother to talk about
its principle and realization any more. In the following parts,
we will simply use S(tag, term) to denote score computed for
a pair of tag and term, and our index construction and system
algorithm will also be stated based on pre-computed scores.

III. INDEX CONSTRUCTION
In this part we propose our TLI (two-layer-based inverted)

index design for indexing XML documents. We use XML-
specific extension to Okapi BM25 [1] as our score function to
get the corresponding tag-term score. The aim of the index
construction should not only contain the structural information
of the XML documents but also support efficiently obtaining
top-k query results according to associated query algorithm.
Motivated by this thought, we extend the classical per-term
inverted index to a two-layer-based inverted index
construction for XML keyword search, as shown in Fig. 1:

Fig. 1 Two-layer-based invert index construction

The left part in Fig. 1 is the first level of index construction,
which is the same as the classical per-term inverted index with
keywords as index entry. Each item in the inverted list is a

Document block 1Per-term inverted list

1) did maxscore offset

2) did maxscore offset

……

n) did maxscore offset

in descending order by maxscore

Document block 2

Document block n

in ascending order by Dewey ID

2010 12th International Asia-Pacific Web Conference

978-0-7695-4012-2/10 $26.00 © 2010 IEEE

DOI 10.1109/APWeb.2010.37

364

table containing three elements (did, maxscore, offset), in
which did is the identifier of XML documents in data set, and
maxscore is the highest score in the corresponding Document
block which we will illustrate later, and offset is an integer to
tag the starting position of its corresponding Document block
as shown in the right part in Fig. 1. The inverted list is
organized in descending order with regard to maxscore.

 The Document block is the second level of index
construction. Generally each Document block is
corresponding to document did and it is also an inverted list in
ascending order with regard to Dewey ID. Each item in the
inverted list of Document block contains two elements and
each item is associated with a linked list that records the
scores of all its ancestors. The following Fig. 2 is an example
of Document block for keyword “forward”.

Fig. 2 Example of Document Block for keyword “forward”

 To calculate the maxscore of the Document block, we just
need to get the maximal score of all scores in the linked lists.

IV. ALGORITHM
This section presents the core SLCA-based threshold

algorithm (STA). Our basic idea for achieving top-k results in
SLCA-based XML keyword search is employing the classical
TA family of algorithms for candidate pruning and adaptive
scheduling decision. However we make several changes
across the process of algorithms to adapt it to SLCA-based
XML keyword search. Fig. 3 shows the algorithm architecture
and data flow on processing.

Fig. 3 Algorithm architecture and data flow

The input of the algorithm is a list of keywords and the
output is sub-tree results associated with the query keywords.
The algorithm process is constituted of three steps: 1) access
to keyword inverted lists 2) the sub-tree generator 3) top-k
answers selector.
1) Access to keyword inverted lists: Our query processing
method is based on pre-computed two-layer-based inverted
index and the first level is sorted in descending order with
regard to maxscore in each item. On the run time our
algorithm sees an item t in one inverted list at each scan step,
and then the algorithm performs random access to pick items
in other inverted lists with the same did as t.did. For each
inverted list we assign a thread to implement sequential access
and random access, and each thread is in charge of recording
the current scan position and ready to fetch the next item.
There is also another thread that is in charge of scheduling
decision in interleaved manner. At the end of each scan step,
this part delivers all the corresponding items of the same did
together with their associated Document block to the sub-tree
generator module. What's more, at each scan step, the
algorithm also makes a prediction for the potential best score
that the unscanned items may reach. The predication for
bestscore is calculated as follows:

 bestscore := ∑i = 1…mhighi
Here m is the number of inverted lists and highi is the

maxscore of each item located at the upper bound in the
unvisited parts of the index lists. We will use bestscore
together with worstscore generated from step 3 to implement
candidate pruning and early termination.
2) The sub-tree generator module is to generate the
corresponding SLCA nodes from Dewey ID lists and also
calculates the corresponding score for the SLCA result nodes
by summarizing all the individual score of each keyword. The
sub-tree generator is implemented in IL (Index Lookup Eager
Algorithm) algorithm raised in [4]. At the same time, to get
the score for each SLCA result, we aggregate its partial score
for each keyword by tracing the linked list for all ancestor tags
corresponded to each item in Document blocks.

3) The top-k answer selector is to preserve the k highest
scores evaluated at current scan step. In our realization, we
employ a min-heap for dynamic value change to generate
current top-k results from last scan step’s top-k results
combined with the newly calculated results from sub-tree
generator.

 STA algorithm
1 for all index lists Li (i=1 …m) do
2 item := (did, maxscore, offset) // scan next item
3 id := item.did
4 for j = 1…m
5 itemj := RA(listj, id) // get all items with did =id
6 Sj := getDocumentBlock(itemj)
7 DListi := getDeweyList(Si)
8 end for
9 bestscore := ∑j = 1…mhighj
10 SLCAResult := IL(DList1, …, Dlistm)
11 getScore(SLCAResult)
12 TopKResult := getTopK(TopKResultOld, SLCAResult)

DeweyID text l inked list for all ancestor tags
 name player players team

0.1.0.1.0 forward 0.1.0.1 0.1.0 0.1 0
 0.5 0.4 0.3 0.1

 name player players team

0.1.1.1.0 forward 0.1.1.1 0.1.1 0.1 0
 0.5 0.4 0.3 0.1

keyword Inverted

Query processing

RA

SA

Sub-tree
generator

top-k answer
selector

worstscore>bestscore

Results

SA = sequential access RA = random access

365

13 worstscore := getMin(TopKResult)
14 TopKResultOld := TopKResult
15 if worstscore <bestscore
16 Output(TopKResult)
17 else
18 return to 2
19 end for
We take the minimal score in the top-k answers at current

scan step as worstscore. Now we get the worstscore of the
current top-k results and the bestscore for predication of best
score among unvisited items from step 1. Thus each time at
the end of step 3 we would apply candidate pruning and test
for possible early termination. If worstscore is no less than
bestscore, the algorithm can safely terminate and output the
top-k results in top-k answer selector. Or else the algorithm
goes back to step 1 to continue the next scan step.

V. EXPERIENCE EVALUATION
In our experiments, we use DBLP data set for our

experiments. We use java for our implementation on a 2.00
GHz server with 8.00 GB of RAM. We have evaluated and
compared naive approach to get top-k results (naive approach
means just going through all the inverted lists to get global
scores of all items for getting the top-k results), XRank and
our STA algorithm with SLCA as query semantic by a variety
of keywords with different frequencies.

Fig. 4 and 5 show the response-time comparison of naive
approach, XRank and STA algorithm for different groups of
keyword frequencies. The response time for Fig. 4 and 5 is the
average of response time after several executions. Fig. 4 and 5
are corresponding to low and high frequency keyword queries
separately.

0

10

20

30

40

50

60

70

m
s

10 100 k

naive approach xrank top-k

Fig. 4 Comparison with keywords of low frequency

0

1000

2000

3000

4000

m
s

10 100 1000 10000 k

naive approach xrank top-k

Fig. 5 Comparison with keywords of high frequency

0

50

100

150

200

250

300

m
s

10 100 k

naive approach xrank top-k

Fig. 6 Comparison with keywords of mixed frequency

In Fig. 6, each query contains two keywords; one is low
frequency keyword, while the other is high frequency
keyword. From Fig. 6 we could see that with this combination
of keywords with mixed frequency, STA algorithm and
XRank also perform better than naive approach.

VI. CONCLUSION AND FUTURE WORK
We have presented the design, implementation and

evaluation of our algorithm for adaptive top-k method applied
in SLCA-based XML keyword search. Our experimental
evaluation shows that our index for XML data and associated
algorithm offer significant performance benefits. However,
there are several avenues to improve the algorithm as future
work. 1) Our algorithm considers the XML data is hierarchical,
taken as tree-based model. For structured (or semi-structured)
data, XML data model may be a graph with the consideration
of IDREFs and XLinks [3]. 2) There may be some situation
that restricts random access or totally forbidden. Also, we will
make a comparison about how and when to apply random
access properly. 3) We will incorporate more query semantics
into our algorithm [8].

VII. ACKNOWLEDGMENTS
This work was supported in part by the National High

Technology Research and Development Program of China
(863) under Grant Nos.2009AA01Z136 and 2009AA01Z143.

REFERENCES
[1] Martin Theobald, Ralf Schenkel, Gerhard Weikum, An efficient and

versatile query engine for TopX search. In VLDB, 2005
[2] Martin Theobald, Holger Bast, Debapriyo Majumdar, Ralf Schenkel,

Gerhard Weikum: TopX: Efficient and Versatile Top-k Query
Processing for Semistructured Data. VLDB J. 17(1): 81-115, 2008

[3] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK:
Ranked Keyword Search over XML Documents. In SIGMOD, 2003.

[4] Y. Xu and Y. Papakonstantinou. Efficient Keyword Search for
Smallest LCAs in XML Database. In SIGMOD, 2005.

[5] Z. Liu and Y. Chen. Identifying meaningful return information for xml
keyword search. In SIGMOD, 2007.

[6] T. T. Chinenyanga and N. Kushmerick. Expressive retrieval from XML
documents. In SIGIR 2001.

[7] N. Fuhr and K. Großjohann. XIRQL: A query language for information
retrieval in XML documents. In SIGIR 2001, pages 172–180, 2001.

[8] Ziyang Liu and Yi Chen: “Reasoning and Identifying Relevant
Matches for XML Keyword Search.” In 34th VLDB / PVLDB Journal,
Vol. 1, 2008.

366

